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ABSTRACT

Title of Dissertation: Discrete Representation of Signals from Infinite
Dimensional Hilbert Spaces with Application to
Noise Suppression and Compression

Anthony Teolis, Doctor of Philosophy, 1993

Dissertation directed by: Professor J. J. Benedetto
Department of Mathematics
and Professor S. A. Shamma
Department of Electrical Engineering

Addressed in this thesis is the issue of representing signals from infinite dimensional Hilbert
spaces in a discrete form. The discrete representations which are studied come from the irregular
samples of a signal dependent transform called the group representation transform, e.g., the
wavelet and Gabor transforms. The main issues dealt with are (i) the recoverability of a signal
from its discrete representation, (ii) the suppression of noise in a corrupted signal, and (iii)
compression through efficient discrete representation.

The starting point of the analysis lies with the intimate connection between the Duffin-
Schaeffer theory of (global) frames and irregular sampling theory. This connection has lead
elsewhere to the formulation of iterative schemes for the reconstruction of a signal from its
irregular samples. However, these schemes have not addressed such issues as digital imple-
mentability and reconstruction from perturbed representations. Here, iterative reconstruction
algorithms are developed and implemented which recover a signal from its possibly perturbed
discrete representation.

Robustness to perturbations occurring directly in the signal domain are also investigated.
Based on the notion of coherence with respect to a frame, a simple non-linear thresholding
scheme is developed for the rejection of noise.

The structure of the discretization has many free parameters including the choice of group
representation transform, the analyzing function associated with the group representation trans-
form, and the sampling set. Each choice of parameters leads to a different discrete representation
and the specification of an underlying set of primitive functions. Reconstructability is directly
related to the frame properties of this set of primitive functions.

Localized discrete representations around a particular signal are also investigated. Trunca-
tions and other signal dependent localization of global representations lead to finite representa-
tions. The approach to finite representations which is taken here can be stated in terms of local
frames for the reproducing kernel Hilbert space formed by the range of the group representation
transform.

Finally, numerical examples of discrete representations which are signal independent and
new signal dependent discrete (positive extrema) wavelet representations are presented. Recon-
struction, noise suppression, and compression experiments are conducted and demonstrated on
numerical examples including speech and synthetic signals.
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Chapter 1

Introduction

In this dissertation we develop theory and implement algorithms regarding, first, the discrete
representation of signals belonging to certain infinite dimensional Hilbert spaces, and second,
the reconstruction of these signals from their discrete representations. Qur formulation of the
problem leads to applications including signal compression and noise suppression.

1.1 Motivation

Many infinite dimensional (Hilbert) spaces are full of redundancy in the sense that they
consist of elements (signals) which admit complete discrete representations. That is, such
spaces consist of signals which admit discrete representations which uniquely describe them.
Let us call such spaces as compressible. The canonical example of compressible spaces are the
Paley-Wiener spaces made up of all functions band-limited by a certain fixed constant. They
are functional Hilbert spaces consisting of elements whose Fourier transforms have compact
support.

Many signals which occur in nature may be considered to come from infinite dimensional
spaces. For example, the variation in air pressure caused by a sound source or the intensity
of electromagnetic energy reflected by an object illuminated by an active source, e.g., sunlight.
Sound and sight are just two examples of natural mechanisms which contain and convey infor-
mation. Because the mediums in which these signals exist are inherently analog their direct
processing by digital means requires discretization.

Digital techniques have fast become the prefered technology in a wide range of practical
applications. Perhaps the best example of this comes from the voice communication industry.
For transmission of spoken messages, the superiority of digitally coded analog voice over straight
analog transmission has been firmly established [Gib93]. Of the many benefits associated with
digital coding the two foremost are low susceptability to noise in communication channels and
the ability of manipulation of the data by digital computers. With communication constraints
such as fixed capacity and limited bandwidth channels, high information content signals can
not be transmitted directly over existing channels. A theory of discrete representations which
addresses issues such as compression and reconstructions is directly applicable to this problem.

With the pervasiveness of digital processing which permeates modern engineering and indus-
try, the fundamental understanding of discrete representations is of great practical importance.



1.2 Perspective

The most natural example of a discrete signal representation in an infinite dimensional
Hilbert space is one where residing signals are evaluated at a discrete set of points, i.e. sampling.
As such the theory of discrete representations and the theory of sampling are intimately related.

Uniform sampling on the space of band-limited functions, also called the Paley-Wiener
spacel, offers a well-known example of a discrete representation. Known to Whittaker [Whil5]
in 1915, and applied later in 1933 by Kotel’'nikov [Kot33] to communication problems, the
so called “Sampling Theorem” did not find fame until the 1949 landmark paper of Shannon
[Sha49]. Recall that the Classical Sampling Theorem establishes that any function f, in the
space of functions band-limited by Q, can be represented in terms of its samples as

) = n sin(2rQ(z —~ nT))
@)= TL fn) s

(where the sum converges in L?) provided that 2T'Q < 1. Note that in the case 2T'Q = 1 the
set of functions {%ﬁ%@} is an orthonormal basis for the space of functions band-limited
by Q.

Many of the developments in what we will call “discretization theory” can be viewed as
generalizations to the Classical Sampling Theorem. In particular, one direction of generalization
is to remove the restriction that the sampling sequence be regular. Marvasti [Mar87] offers
an extensive, but dated, bibliography on problems related to irregular sampling. Irregular
sampling theory for band-limited spaces has been studied extensively by Paley-Wiener [PW34],
Levinson [Lev40], Beutler [Beu61], [Beu66], and Yao-Thomas [YT67]. And recently all of the
afore-mentioned theory has been extended and unified by Benedetto-Heller [BH90],[Hel91], and
Benedetto [Ben92] in the context of frames. Frames were originally introduced by Duffin and
Schaefer [DS52] for use in problems related to non-harmonic Fourier series. The theory of
frames plays a fundamental role in irregular sampling and discretization theory.

Developing sampling theorems for spaces other than those that are band-limited is an addi-
tional level of generalization to the Classical Sampling Theorem. Two types of spaces that are
of particular interest are generated as the image of (i) the Gabor transform and (ii) the (affine)
wavelet. transform. The continuous wavelet and Gabor transforms are reviewed in Chapter 2.
The first space has its roots with Gabor [Gab46] and the coherent states of quantum physics
while the second, has seen recent and significant growth with Meyer and Daubechies [Mey90]
[Dau] [DGMS86] [Dau90]. Both of these transforms can be identified with groups: in the case
of the Gabor transform the Weyl-Heisenberg group of modulations and translations and in the
case of the wavelet transform the affine or az + b group of dilations and translations.

Both the wavelet transform and the Gabor transform have associated discretizations and
sampling theorems. To see this, consider the case of the wavelet transform. An affine wavelet
transform is a continuous transformation that maps, for example, L?(IR), the space of finite en-
ergy signals of one real variable, to finite energy signals on the affine or az + b group. Sampling
the wavelet transform: “regularly” (with respect to the group structure), one obtains the (reg-
ular) discrete wavelet transform. Theorems for the reconstruction of a signal from its discrete

!Because of a result of Paley and Wiener which characterizes the band-limited functions as entire functions
of exponential type, such band-limited spaces are labeled as Paley-Wiener spaces.



wavelet transform are sampling theorems; and the regularly sampled discrete wavelet transform
of a signal f of finite energy is a discrete representation of f.

Irregular sampling in spaces associated with the Gabor transform and the wavelet transform
has been addressed by Gréchenig [Gr692]. Introduced by Mallat [MZ92b] in the context of
image processing, the wavelet maxima representation can be thought of as a specific irregular
sampling of the continuous wavelet transform. In this work Mallat has employed the method
of projection onto convex sets [YW91] to obtain reconstructions.

Another space of interest is that of the Bargmann-Fock space. Irregular sampling in the
Bargmann-Fock spaces has been investigated by Seip [Sei92al,[Sei92b]. Ogawa [Oga89] has
taken an operator theoretic approach to the sampling problem at the level of Reproducing
Kernel Hilbert Spaces (RKHS). Venturing further, out of the realm of Hilbert spaces, into
the realm of Banach spaces, Grochenig and Feichtinger [FG89] provide an extensive theory of
“atomic decompositions” as discrete representations. Here, inner product dependent properties
are replaced by analogous convolution formulations. In this thesis we shall limit the scope of
the discussion to discretization in the more practical Hilbert spaces and not consider sampling
in general Banach spaces.

1.3 Objectives

As mentioned earlier our primary goal is to develop both theory and numerical algorithms
for the representation and reconstruction of signals from (compressible) Hilbert spaces. In
particular, the following are some of the major objectives of this research:

(i) To develop tools for the study of invertible and stable discrete representations of signals
resident in certain Hilbert spaces (in particular, reproducing kernel Hilbert spaces (RKHS)

).

(ii) To provide implementable methods for the reconstruction of these signals from their
discrete representations and to provide bounds for the associated reconstruction error.

(iii) To develop efficient methods for determining finite representations from discrete represen-
tations and to provide bounds on the associated error in reconstructions due to truncation.

(iv) To identify properties of discrete representations which make them suitable for practical
applications, e.g., robustness to noise and coefficient imprecision.

(v) To provide particular representations; for example, the wavelet extrema representation of
Mallat [MZ92b).

(vi) To apply the theoretical analysis developed and to implement the associated algorithms
in the particular signal processing applications of data compression and noise suppression.

1.4 Approach

This research has two distinct components. First, it has an analytic or theoretical compo-
nent and, second, it has a computational or implementational component. Analytically it is



desirable to work at a level of sufficient generality as to capture the essential features of the
subject. Computationally, it is desirable to draw algorithms from a theory which is directly
implementable. We wish to find an intermediate ground in which a coherent and implementable
theory can be successfully developed. Because of these issues we believe that a proper setting
for our investigation is in the Reproducing Kernel Hilbert Spaces.

On the computational side, we are interested in developing and implementing algorithms
for the reconstruction of signals taken from certain infinite dimensional Hilbert spaces. The
reconstruction should use only knowledge of a particular signal’s discrete representation. Qur
approach to this problem will involve reproducing kernel Hilbert spaces in a fundamental way.
The two main examples of RKHS’s which we will target numerically are the Paley-Wiener space
and the image of wavelet transforms.

On the analysis side, the RKHS’s of interest will be infinite dimensional (separable) com-
pressible Hilbert spaces. This space is denoted H. Discrete representations of elements in this
space will reside in an infinite dimensional (discrete) space which has functions with support
on a discrete lattice. This space is denoted ¢?(Z). Finally, finite discrete representations of
elements in H will be derived as finite truncations of corresponding elements in £2 (Z). This
finite dimensional (discrete) space which has functions with support on a discrete lattice is
denoted as Hy.

We have thus associated with the three spaces M, £2 (Z) and H; the notions of compressible,
discrete, and finite representations, respectively. Now, we define the mappings L (discretization)
and F (truncation) through the statement

HE 2 (Z) 5 H,.

The research described here can be thought of succinctly as a detailed study of the properties
of the two operators L and F'.

For instance, suppose L is an invertible bounded linear operator so that L is a topological
isomorphism. Consequently, the two spaces H and L(H) are topologically equivalent. Therefore
there is no loss of information in the discrete representation. Thus, with respect to information
preserving discretizations, there is no need to require the image L(H) of the discretization
operator L, to be the whole space £2(Z). ? Hence, this freedom may be exploited to achieve
certain goals, e.g., noise suppression and signal compression.

Example 1.4.1 identifies a discretization operator for the familiar case of uniform sampling
in a Paley-Wiener space. We see that sampling rates strictly above the Nyquist rate imply the
injectivity of the discretization operator; and that rates at the Nyquist rate further imply the
surjectivity of the discretization operator.

We denote the Fourier transform of a signal f as f and formally define it as

o= [ rweira,

where i = /—1. This definition is valid on L'(R) and can be extended to functions in L%(R),
viz. Chapter 2.

2This situation is to be contrasted with the problem of interpolation in which one starts out with a repre-
sentation in £2 (Z) and asks to find an f in H which has this representation. For interpolation problems it is
required that I be surjective.



Example 1.4.1 (Uniform Sampling in H = PWg) Given Q > 0, the Paley- Wiener space,
PWq, is defined as

PWo £ {fe I*(R) :supp £ C [-92,9]}.

It is a RKHS with kernel
sin(2rQ(y — z))

m(y - =)

Ka:(y) =

and reproducing formula
Vfe PWq, f(z)=(f K.
For 2TQ} < 1, we have the well-known Whittaker-Kotelnikov-Shannnon formula
sin(27Q(z — nT))
7(z — nT)

Vf e PWa, f(z)=T)_ f(nT)
which may be rewritten as
VfEPWQ, f=T2<f,KnT>KnT-

Hence for the case H = PWq we may define the discretization operator L : PWq + (%(Z) as
the mapping

Lf = {< f,VTKnr >}
with the adjoint L* : £2 (Z) — PWq
L¥c = EcnﬁKnT.

This L is an injective isomorphism when 27Q < 1 and is surjective when 27Q = 1. Thus, for
the case 2TQ2 = 1, L is bijective.

1.4.1 Discrete Representations and Frames

Let H denote a separable Hilbert space. The main tool which we employ in our investigation
is the theory of (Hilbert space) frames due to Duffin and Schaeffer [DS52]. As we will subse-
quently show, the power of frame theory lies in the fact that the associated “frame operator”
S has many important properties; these include the following:

(i) S has the factorization § = L*L, e.g., [DGM86], [Dau90], where L is a “discretization”
operator which associates with any f € H the discrete representation Lf (L* is its adjoint);
and

(ii) S is invertible.
These two properties are key elements of our analysis. To begin with, we have
VfeH, f=S'L*Lf. (1.4.1)

In this equation we see that any signal f can be fully represented by the discrete vector L f;
i.e. the original signal f can be recovered from the discrete representation L f. In other words
f and Lf contain the same information.



1.4.2 Finite Representations

Through frame theory we are able to achieve countable representations of signals resident
in any separable Hilbert space; however, we are ultimately interested in the finite dimensional
representations of signals. It is evident that a method to go from the countable to the finite
is desired. We have previously introduced such a transformation as the mapping F. In this
section we discuss some of the pertinent issues concerning the operator F'.

We have seen that any signal in a compressible Hilbert space H has a representation in
terms of a countable set of coefficients. However, we would like to represent signals in H in
terms of a finite set of coefficients. This leads naturally to the following questions:

(i) How is a finite set of coefficients chosen?

(ii) What are bounds on the associated approximation error?

Here, approximation error refers to the error incurred by performing reconstruction based on
the finite set of coefficients. To answer these questions we identify and analyze the properties
of an appropriate operator, F.

In order to “truncate” representations in £2(Z) so that the resulting truncations are mem-
bers of a finite dimensional Hilbert space H, we introduce the truncation operator, F : £2 (Z) —
Hys C €2(Z). We think of H; as the representation space. The best representation space for a
given signal f. € H will, of course, depend largely on the signal itself. Therefore the truncation
operator F (respectively, the space H;) will depend on a specific f, € H and an error tolerance
6 > 0. When pertinent we will write Fy, or Fy, 5 (respectively, H(f.) or H(f«,0)) to make
the dependence explicit. The representation space Hy can then be characterized as

Hy(fo) = Fr, L(R),

the image of the composite operator Fy, L. The signal dependence of the representation space
is of great interest in applications such as signal compression and noise suppression. Along
with the fact that F'L is a continuous mapping, the fact that the representation space is signal
dependent suggests that it may be useful as describing signals which are alike, i.e. classification
based on representation.

1.5 Synopsis

Our methods are demonstrated on numerical examples including speech and synthetic sig-
nals.

In chapter 2 we present background material.

In chapter 3 we review the theory of frames and develop some useful theoretical tools.

In chapter 4 we develop discrete representations in a general setting of reproducing kernel
Hilbert spaces and give specific examples of such spaces and their representation.

In chapter 5 we introduce the notion of a local frame and its relationship to various signal
dependent representations.

In chapter 6 we provide numerical examples of discrete signal representations and their
reconstructions. In addition, we apply our discrete representation theory to the areas of signal
compression and noise suppression. In particular we demonstrate our approach on speech
signals.



Chapter 2

Mathematical Preliminaries

This chapter introduces the basic notation, concepts, and tools which we shall employ
throughout this thesis. In particular, we introduce the pertinent basic spaces with which we
shall deal, the Fourier transform and some important basic theorems which are associated with
it. In addition we present some concepts from group theory which are pertinent to the discrete
representation of analog signals. Also we describe the continuous versions of the Gabor and
Wavelet transforms. Finally some notions from sampling theory are reviewed. Most of the
basic notation and concepts which we use may be found in standard texts on real analysis and
operator theory, e.g., [Roy68] and [GG80]. Material dealing with groups and weighted spaces
is in the same vain as [FG89] and [HW89] and much of the material on sampling may be found
in [You80] or [Ben92).

2.1 Notation and Tools

2.1.1 Basic Symbols and Functions

Z denotes the integers.

R denotes the real numbers.

R* = {t€R : t> 0} denotes the strictly positive real numbers.

R™={t€R : t <0} denotes the strictly negative real numbers.

€ denotes the complex numbers and i = v/—1.

The complex conjugate of z € € is denoted Z and the magnitude of z is denoted |z|.

T2 {z € € : |z| = 1} is the torus of complex numbers with unit magnitude, i.e. the unit
circle in the complex plane.
If S is a set then the characteristic function 1g of the set .5 is defined as

1, z €385,
0, otherwtse.

1s(z) = {

The function 6,y is the Kronecker delta function defined as

s )1, m=mn,
™l 0, m#n.



The Dirichlet kernel or sinc function d is defined as

sin(t)
nt ’

d(t) =
and for a constant A > 0 the L' norm preserving dilation dy of d is

dr(t) = Ad(AE).

2.1.2 Basic Function and Operator Spaces

An essential requirement of the Hilbert spaces which are to be discretized is that they admit
dense countable subsets, i.e. that they be separable. Because of this whenever the discussion
entails an arbitrary Hilbert space that Hilbert space should be assumed separable. No further
mention of the separability issue will be made.

The three fundamental Hilbert spaces with which we deal are L%(R), ¢2(Z), and PWq,.
Also of interest is the Banach space of all linear bounded operators mapping one Hilbert space
to another.

L%(R) is the space of complex-valued finite energy signals defined on the real line R. The
norm of an element f € L%(RR) is

1= ([ vora)* <o,

where integration is over IR, and the inner product of f,g € L2(R)is (f,g) = [ f(t)g(t)dt.
2 (Z) is the space of complex-valued finite energy sequences defined on the integers Z. The
norm of an element ¢ € ¢2 (Z) is

1
llell = (X leal?)? < o0,

where summation is over Z, and the inner product of ¢,d € {2 (Z) is {c,d) = 3 c,dy.
B(H1,Hz2) is the space of bounded linear operators which map the Hilbert space H; to the
Hilbert space Hj. The norm of an element K € B(H;,Hs) is

T
I = sup 12l o
ce el

2.1.3 Bases and Completeness in Hilbert Space

Let H be a separable Hilbert space and {¢,} be a sequence of elements in H. {¢,} denotes
the closure.

L. span{¢,} is the set of vectors generated as linear combinations of the elements of {¢,},
i.e. span {¢,} = {ZnN=1 Cndn : cn€C,Nec Z}.

II. {¢n}is densein H if span{¢,} = H.
III. {¢n} is completein H if (f,¢,) = 0 if and only if f = 0.



IV. {¢.} is orthonormal in H if (@, dn) = by -

V. {¢.} is a Schauder basis or basis for H if for each f € H there is a unique sequence
{cn} € C such that f =3 c, .

VI. An orthonormal set {¢, } is an orthonormal basisfor H if for every f € H there is sequence

{en} € € such that f =Y ¢, d,. If {¢,} is an orthonormal basis then for every f € H
f = Z (f ’ ¢n) ¢n
k(3

and
7112 = Z [ (f, én) |2 (Parseval’s equality. )

VII. A basis {¢,} is a Riesz basis for H if it is related to an orthonormal basis by a topological
isomorphism, i.e. there is a topological isomorphism T : H — H such that ¢, = Te, for
all n where {e, } is an orthonormal basis for H.

VIII. A basis {¢,} is an unconditional basis for H if every convergent series of the form 3" ¢, ¢,
is unconditionally convergent, i.e. every arrangement of its terms converges to the same
element,.

IX. An unconditional basis {¢,} is a bounded unconditional basis for H if there are constants
0 < A < B < oo such that A < ||¢,]] < B.

X. If {t,} is another sequence in H then {¢,} and {1} are biorthogonal if (¢m,Vn) = bm n-

2.1.4 Fourier Transform

The Fourier transform is a mapping F : L%(R) — L*(RR) as follows. For f € L}(R) C L2(R)
Ffr)=fly) = /f(t)e‘z"“"dt, (2.1.1)

and for f € L*(R) \ L1(R)
Ffy)=f(7) = lim /_1; f@)e 0y, (2.1.2)

for y € ]ﬁ(E R). Convergence of the integrals to Ff = fis in the L?-sense.
We shall almost exclusively adopt the “~” notation to indicate the Fourier transform.
The Fourier transform of f € L?(IR) may be represented as

Ftv)=A(7, e'y)L2(R) (2.1.3)
and consequently the inverse transform as
£y = (Fre-r)

Two fundamental results in Fourier theory are the Plancherel and Parseval relations. Let
f,9 € L*(R).

. (2.1.4)



Plancherel

[1rwirae= [1feier.
Parseval ~
[ fwawar= [ faar.

The Plancherel and Parseval relations may be represented as || f|| = ||f]| and (f,9)2(r) =

< 1, §>L2(ﬁ) respectively. In this form the relations also hold for spaces other than L%(IR). The

Fourier transform is a unitary map from L2(RR) to L%(RR).
Two further spaces of interest are the Hardy spaces H :‘,’_ and H? given as

HZ = {f € L*(R) : supp f C [0,00)}

and ~
H? = {f € L*(R) : supp fC (—00,0]} ,

where supp fis the support of f . Let f; be an arbitrary element of H_f_ and f_ an arbitrary
element of H2. The Hardy space H 2 is a Hilbert space with norm

el = ([ 17 0F)’

with the inner product it induces. The Hardy space H2 is a Hilbert space with norm

el = ([ 17 008)"

with the inner product it induces. Also H2 and H? are orthogonal complements in L2(R),
ie., L*(R) = H2 @ H2. Consequently, for an arbitrary element f in L%(R) there are elements

j- € HZ and fy € HY so that f = f_ + fi and |IfI? = /-l + /s I3 -

Remark 2.1.1 Any real element of L?*(IR) may be associated with either HZ or HZ since
all real functions have Fourier transforms which are involutive (conjugate symmetric), i.e., if

f is real then f('y) = ?(—7). Thus, real functions are uniquely determined by their Fourier
transforms on [0, 00) or (—o0, 0].

2.1.5 Operators

Let H; and H; be arbitrary Hilbert spaces with norms ||-||; and |||z and inner products
{-,*); and (-,-), respectively. Let T : H; — H,.

I. The range of T is T(Hy) £ {Tf : f € My}

IL. The kernel of T is ket T 2 {feH, : Tf=0}.

10
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v
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VI

VII.

VIIL.

IX.

X.

XI
XII

. T is injective or one-to-one if T f = Tq if and only if f = g. If T is a linear operator then
T is injective if and only if ker T = {0}.

. T is surjective or onto if T'(H;) = M.
. T is bijective if it is both injective and surjective.

. T has an inverse T~! : Hy + H; if T is bijective. In this case the inverse of T is defined
asT lg=fifg="TFf.

T is continuous if z, — z implies Tz, — Tz. A linear operator T is bounded if and only
if T is continuous.

The adjoint of T is the unique operator T* : Hy +— H; so that (T'f,g), = (f,T*g), for
all f € Hy and g € Hy. T is self adjoint if T* = T.

T € B(H1,Haz) is a compact operator if for all sequences {f, : ||full =1} C H; the
sequence {T'z,} has a converging subsequence in Hj.

T is a topological isomorphism if T is bijective, T € B(H1,H3) and T-! € B(Hz, H;).
Thus, both T and T~! are continuous linear mappings.

. T is an isometry if for all f € Hy, ||Tf|l2 = ||fl-

. T'is a unitary map if it is linear, bijective, and an isometry. If T is unitary then 77! = T*.

Compositions of topological isomorphisms are again topological isomorphisms. Two Hilbert
spaces H; and Hz which are related by a topological isomorphism are topologically equivalent.

Top

ologically equivalent spaces are in an abstract sense the same. A topological isomorphism

which is norm preserving is a unitary map. Compositions of isometries are again isometries.
With H' a subspace of a Hilbert space H the operator Py: : H +— H’ is the orthogonal

proj

ection operator onto H'.

Fact 2.1.2 ([GG80, Theorem II.13.1]) P € B(H,H) is an orthogonal projection if and only
if P?2 = P and P is self adjoint.

Fact 2.1.3 ([GG80, Theorem III1.4.1]) If T € B(H,H) is self adjoint then

7]  sup LLTH)]

ren |17

Let f be an arbitrary element of L3(IR) and take a,b and s > 0 all to be real numbers.

I

. The involution operator ~: L(IR) — L%(IR) is a unitary map given by

Jiy £ F(-1).

11



II. The translation operator 7, : L2(R) — L%(R) is a unitary map given by

A

(raf)t) = f(t—a).
III. The modulation operator e, : L(IR) — L?(IR) is a unitary map given by
(1) & ™ f(1).
IV. The dilation operator D, : L2(R) — L%*(R) is a unitary map given by
(Daf)(t) & s¥5(st).
Table 2.1 displays in a compact form these unitary operators on L2(IR), their definitions, in-

verses, and Fourier transforms.
Of special interest are the composite relations:

eaTh = €2™%e,  and 7D, = D,Tg.

(Name 1 U7 [ 0N® [ T7=0"7] W]
translation | 7,f | f(t —a) T_of €_q j
modulation | e, f | e?™! £(t) e—af Tof
dilation Dsf | s3f(st) D, f D,-lf
involution f F(=t) f ?

Table 2.1: Unitary Operators U : L2(R) — L?(IR), their inverses (equal to their adjoints), and
their Fourier transforms. f € L?(IR), a,b € R and s € R*.

The convolution f * g of two functions f,¢g € L%(RR) is

(Fr9)®) = [ f@)(t - )da.
Convolution may also be represented as

(fx9)®) = {f,79).
By standard arguments (f * g} = fg. To see this explicitly write
f+g(t) = (f,mg)
= < 7, e_t§> (by Parseval)
(Fgre-t) = (F9)V(2)

{l
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2.1.6 Bandlimited Spaces

Paley and Wiener [PW34] have made significant fundamental contributions to Fourier theory
and, in particular, the understanding of bandlimited functions. For this reason we label spaces
of bandlimited functions as “Paley-Wiener” spaces. Bandlimited functions are defined as those
which have compact support in the frequency domain, i.e. their Fourier transforms vanish off
some compact set. One result of Paley and Wiener characterizes any §2 bandlimited space as
one consisting of entire functions of exponential type 27. ‘

For Q > 0 PWg, is the Paley-Wiener space defined as

PWo £ {f € L*R) : supp f C[-9,9]}.

Recall that a complex function f : € — € is analytic at a point zp € € if the complex
derivative f’(z) exists for all points in some open neighborhood containing zp.

Definition 2.1.4 (Entire functions of exponential type) Let f: C — C.
a. f is an entire function if it is analytic on all of €.
b. An entire function f is of exponential type A if

Vze €, |f(2)] < MeBH

for some positive constant M = M(B) and all B > A.

Theorem 2.1.5 ([PW34, Theorem X]) A function is @ bandlimited if and only if it is an
entire function of exponential type 27€. i.e.,

PWgq = {f : f is an entire function of exponential type 27rQ} .

For a < b € R PW(, is the Paley-Wiener space defined as

A ) 2
PWyy £ {f € LR) : supp F C [a,8]}.
For Q3 > Q; > 0, PWq, q, is the Paley-Wiener space defined as
A 2 N
PWa, 0, £ {f € I(R) : supp [ C [0z, 0] U [0, 0]},

Clearly PWq, q, = PW_q,,—0,1® PWiq, 0,

L?[a,b] is the space of finite energy signals defined on the interval [a,b]. The Fourier
transform is an isomorphism between the spaces PW[, ;) and L?[a,b] and hence, they are topo-

logically equivalent. In particular, the spaces 2 [-Q,9Q] and PW are topologically equivalent
by the Fourier transform and we may write PWq = L2 [-Q, Q].
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2.2 Reproducing Kernel

For Hilbert spaces of functions, the Riesz representation theorem states that every bounded
linear functional may be represented as an inner product with a particular element from the
Hilbert space. Let H denote the Hilbert space. A functional on H is any mapping F : H — C.
In particular, consider the collection of point mappings {Fw}zeg given as

Ve Eg, sz:f(w)v

where G is some domain on which functions in M are defined. Clearly the point mapping
collection {F;} g is a set of functionals on H. It is easy to verify that each member of this
set is also linear. If all members of the Hilbert space H satisfy a pointwise bound on G

Vo €, |f(2)| < Ml (22.1)

then the collection {F;}, . is a set of bounded linear functionals. By the Riesz representation
theorem for each # € G there is an element K, € H such that the functional F, may be
expressed as

Fa;f.: (f,Kz)-
The reproducing kernel for a Hilbert space H(G) is a mapping K : ¢ X G — @ defined as
A
K(z,y) = (I(y,Ka:)'H(g) .

If the pointwise bound of (2.2.1) holds over G then Ky(z) = K(z,y) for z,y € G and H(G) is a
reproducing kernel Hilbert space (RKHS).

Example 2.2.1 For @ > 0 the Paley-Wiener space PWg, is a RKHS with reproducing kernel
K(s,t) = darq(t — s) since for all f € PWq

1@ = (Fpaa)
= (f *d2xq)(?)
= <f’ Kt) ]

where K; = 1ydarq.

Example 2.2.2 For Q; > Q; > 0 the Paley-Wiener space PWq, q, is a RKHS with reproduc-
ing kernel K(s,t) = 2cos(m( + Q2)(t - 5)) dr(a,—a,)(t ~ ).

2.3 Group Representation

14



2.3.1 Groups

A group is a set G along with an identity element and an associative binary operation on G
called the group action. The group action is denoted as the operation “” so that with z,y € G
then z -y € G denotes z acting on y. The identity element of the group is denoted as “e”, and
the inverse of an element z € G is z=1. To formally state the definition, a group is a pair (G, -)
where G is a set, “.” is the group action and there is an e € G so that

a. ifz € G then z-e = z, and
b. if z € G then thereisaz ! € Gsothat z-z~! = e.

A group is abelian if the group action is commutative. For example, (IR, +) is an abelian group
with identity element e = 0. Non-abelian groups will be of use in the general approach to
discrete signal representation presented here. Much of the set up which is presented is adopted
from [HW89].

The two examples of groups which follow are are found in the background of both the
Gabor and wavelet theory. The particular form of the associated group operations is justified
in Appendix B, cf. Section 2.3.3.

Example 2.3.1 (Affine Group) The affine group is the upper half-plane G4 = R xIR* along
with the group action defined as follows. Let 2,y € G4 and z = (¢;,8;) and y = (t,s,) then

z-y=(tg,8z) (ty,8y) = (tc + s;;lty,sxsy)

and
w_l = (ta:asm)-l - (_Sxta:’s:;l)

so that the identity element is e = (0,1).

Example 2.3.2 (Weyl-Heisenberg Group) The Weyl-Heisenberg Group is Gy = T x R X
R with the following group action. Let 2,y € Gy so with 2,2y € T and t;,74,%y,7y € R we
have 2 = (25,15,7z) and y = (2y,1y,7,) then

Ty = (25,tz,7%)  (ZystysVy) = (zxzye_””yt‘,'yz + Yy te +1y)

and .
(za:, tz, 71:)_1 = (zgle—Zm'yxtz, —tg, _7:0)

so that the identity element is e = (1,0,0).

2.3.2 Weighted Spaces

Define the Hilbert space of p-square integrable functions as

Lz(g) 2 {F/g[F(w)|2du(:I:) < oo}
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Let F,G € L2(G). The space L2(G) has the associated norm

1
2
1Pz = ([ IF@Fua)
and the inner product
(FG)yq) = [ F@B@)in(z).

A measure y on a group G is left-invariant if for every integrable function F on G and every
Yy€EG

[ Fa 2)autz) = [ Fle)aua)

Such a measure is called a left Haar measure and it is well known from measure theory that

such a measure exists and is unique up to multiplication by a constant.
The convolution F + G of F and G elements of L(G) is defined as

F*G(z) = /gF(y)G(y‘lfv)du(y)-
For z,y € G, the translation operator T}, : L%(G) — L%(G) is

Tof(y) = f(=""y).

If p is the left Haar measure then T} is unitary and 7! = T = T,-1. The involution F of
FeL%(G)is ~ B
F(z) = F(z™").

A function F is involutive if F = F. The convolution F * G may also be written

(F+G)(2) = (F, T$C~¥>Lﬁ(g) :

In the case that G = (IR, +) these formulas-reduce to the standard ones and involutive functions
are those whose real parts are even and imaginary parts are odd.
2.3.3 Representation

Let H be a Hilbert space and G be a group. A representation of G on H is a mapping
IT: G — B(H,H) which satisfies the relation

Ii(z)M(y) = (z - y),

for all z,y € G. For example, with respect to the group (IR, +), II(t) = 7; is a representation of
R on L%(R) since 7;7; = 7¢4, where t,s € IR.

An element g € H is cyclic if span {Il(x)g},cg = H. For example, darq € PWy is cyclic
with respect to the group (IR, +) with representation 7.

I. A representation II is irreducible if every g € H \ {0} is cyclic.

16



IT. An element g € H is admissible if

/gl(g,ﬂ(l‘)g) |2du(z) < oo.

The set of admissible functions is denoted Ag,,(H) so that

Anu) 2 {gen\ (0} ¢ [ 140 T(@)g) Pau(o) < o0

Note that Am . (H) C H.

III. A representation II is square-integrable if it is irreducible and .Ap , () is not empty.

2.4 Group Representation Transform

The basic approach to discrete representation in Hilbert spaces which is taken here involves
the sampling of an auxiliary signal dependent function or transform. This transform is known
as the group representation transform. It is a generalized transform which contains the wavelet
and Gabor transforms as special cases. Feichtinger and Gréchenig [FG89] have developed this
generalized approach in the setting of Banach spaces.

The group representation transform [FG89] of f € L*(IR) with respect to an admissible
g € An,u(H) is a mapping V, : L*(R) — L2(G) given as

(Vo £)(=) = (f, L(z)g). (2.4.1)

The group representation transform is the fundamental transformation from which all dis-
cretizations studied in this thesis will come. Discretizations which we will consider are of the
form {(V,f)(z)},er where T' is a countable subset of G. It is expected that such samplings of
the group representation transform will allow full recovery of f under certain density conditions
on I'. This is because the range V,(H) is a reproducing kernel Hilbert space. To see this, take
f,9 € H and note that by Cauchy-Shwarz

(V) (@)l = [{f, ()9} | < I FIITL(=)gll < Aol ()] < Mo,

where M, < oo since II(z) is a bounded operator by definition. Thus, there is a pointwise
bound of the form given in (2.2.1). From the discussion in Section 2.2 there is a reproducing
kernel associated with V, and the range V,(H) of V, is a RKHS. Moreover with the aid of the
following theorem it is possible to write down explicitly the reproducing kernel for V,(H).

Theorem 2.4.1 ([GMP85]) Let II be a representation of the group G on the Hilbert space
‘H with left Haar measure p. If II is square integrable then there exists a unique self-adjoint
positive operator T : A, (H) — H such that for all ¢1,92 € An,,(H) and for all fi, fo € H

Vor f1s Vo fod 13 g) = (15 f2) (T91,Tg2) -
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As consequences of this theorem two corollaries are derived immediately. These corollaries
may be thought of as counterparts of the Parseval and Plancherel relations. With T' be the
unique self-adjoint positive operator of Theorem 2.4.1 the positive scalar ¢4 is defined as ¢; =

ITgll. '
Corollary 2.4.2 (“Parseval”) If g € A ,(H) and fi, fo € H then

(ngl,ng2>L?‘(g) = Cg (flaf2)-

Corollary 2.4.3 (“Plancherel”) If g € A ,(H) and f € H then
Vol 0) = 2 71

The following theorem establishes that the range of the group representation transform is
. a reproducing kernel and gives explicitly the form of the kernel. Asserted as a corollary is the
fact that convolution with this kernel performs the orthogonal projection onto the range of the
group representation transform.

Theorem 2.4.4 Suppose the hypothesis of Theorem 2.4.1 are satisfied and II is a unitary
representation then V () is a RKHS with kernel K(z,y) = Ty K(z) where

K(2) = (Vys)(@)

Proof:
Let F € L2(G).

(F+K)z) 2 /g F(y)K (y~"z)du(y)

7o) (5007 duto

= Zlg" gF(y) (g,ﬂ(y'lz)g> du(y)

i

= 3 gF(y) (I(y)g, IL(z)g) du(y)

- 212 /g F(y)V,(IL(z)g)du(y)

1
=z (F, Vo(I(2)9)) 12 () -
Orthogonally decomposing F with respect to V,(H) as F = V,f + H where H € V,(H)! for
some f € H yields
1 . .
(FxK)=x) | é (ng,Vg(II(z)g))La(g) (H is nullified)
= (f,1(=)g} (by Theorem 2.4.1)

= Vif(2).

It
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Corollary 2.4.5 Convolution with the reproducing kernel K performs the orthogonal projec-
tion onto the range V,(H), i.e.,

VF € L%(G), F*K = PygF.

Note that the kernel K is involutive, i.e. K = K. To see this we shall without loss of
generality assume ¢, = 1. Write

K(z)= (Vog)(z) = Vog(=™")
= (g,II(z"1)g)
= (I(z)g,9)
= {g,1(z)g)
= (Vy9)(z) = K(=).

Thus, (F *x K)(z) = (F,T,K).

2.4.1 Gabor Transform
With g € L?(R), the continuous Gabor Transform G, f of a signal f € L?(RR) is

(GN(t) = [ 1@)e 5o - t)de.

The Gabor transform may be interpreted as time-varying Fourier transform where the function
g acts a sliding window' in time over f. At a particular time instant ¢y the Gabor transform of
a function f is the Fourier transform of f modulated by a %y translated version of g, i.e.,

(G f)(t0,7) = (Fre9)"™

In this way the Gabor transform attempts to expose the time-frequency content of the under-
lying signal f. This transform is also called the “short-time Fourier transform”.
Alternatively the Gabor transform may be written as

(GoH)t,7) = (freymg)
(f,10(1,1,7)g)
= (f,(z)g)

where z = (1,t,7) € Gy, the Weyl-Heisenberg group, and II(z,t,vy) = z7ieqg where |2| = 1
is a representation of Gy on LZ(IR) (See Appendix B for verification). This representation is
denoted II = IIz. The Weyl-Heisenberg group action is given in Example 2.3.2. For the Gabor
transform the associated left Haar measure is the product measure

I

du(z,t,v) = dzdtdy.
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Although the toral component z associated with the Weyl-Heisenberg group Gy is necessary to
properly define the representation Il it can effectively be ignored. To see this, first note that
My(z,t,7) = 2lx(1,t,7). Hence, for any g € L?(R)

/g I(z)g du(z) /T /R /R g (z,t,7)g dzdtdy
= A/};/:rzdzHH(l,t,'y)gdtd'y

= //HH(l;t,v)gdtdv-
RJR

Theorem 2.4.6 ([HW89, Proposition 3.2.4],[DGMS86]) If f,g € L2(R) then

1Gs fllzacomy = llgll I F1I-

This theorem may be used to show that Il is a square integrable representation of Gy on
L% (R). Thus, Theorem 2.4.1 is applicable where T = Ty = I. All g € L?(IR) are admissible
and G is a multiple of an isometry.

2.4.2 Wavelet Transform

For s > 0 the continuous wavelet transform W, f of a signal f € LZ(IR) is

1 —
(W, h)(t,9) = st [ 1(@)(s(o — 1))dz.
Alternatively, the wavelet transform may be written as

ng(t’s) = <f?TtDsg)
= (£, 1(2,5)9)
= (f,1(z)g)

where z = (t,s) € G4, the affine group, and II(¢,s) = M4(¢,s) 2 1:D; is a representation of
Ga =R x RY on L?(R). The affine group action is given in Example 2.3.1. For the wavelet
transform the associated left Haar measure is

du(t,s) = s~ 2dtds.

See Appendix B for verification that this p is the left Haar measure and that II4 is a represen-
tation of G4 on L%(R).

Theorem 2.4.7 ((HW89, Theorem 3.3.5],[GM84]) If f,g € L*(R) then

IWs fllzzo.a) = Il I Tagllzz + 1f1l52 1TagllEr2

v

where Tag = (|’>’|_% 5(’7))
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This theorem may be used to show that Il 4 is a square integrable representation of G4 on
H,f_ and H2. Thus, Theorem 2.4.1 is applicable. A similar result can be developed for real
signals, c.f. Remark 2.1.1. By Theorem 2.4.7 if f is a real signal then

1
IWaFllzz(g.a) = NI 5Tagll-

If g is admissible then ¢; = ||Tag|| < 0o and W, is a multiple of an isometry.

2.5 Sampling and Interpolation
Let H be an arbitrary Hilbert space, e.g. PWg. Let Hy be an arbitrary discrete Hilbert

space, e.g. £2(Z). A sampling operator is any mapping L : H +— Hy. An interpolating operator
for H is a mapping A : Hqg — H.

2.5.1 Sequences in Hilbert space

Definition 2.5.1 (Bessel Sequence) a. {¢,} C H is a Bessel sequence for H if

ViEH, SI{f.6n) [ < co.

b. {¢.} C H is a Bessel sequence of uniqueness if in addition to a. there is a constant A > 0
such that

AIFIP < 301 bn) 1P

Definition 2.5.2 (Riesz-Fischer sequence) {¢,} C H is a Riesz-Fischer sequence if

Vee 2(Z), IfeHd c={{fén)}-

With respect to the sequence {¢,} C H define the sampling operator Ly : H +— ¢2(Z) as

Lsf ={(f,¢n)}
where f € H. The notions of Bessel and Riesz-Fischer sequences may be directly related to

properties of the mapping Ly. Namely, {#,} is a Bessel mapping if and only if Ly is injective
and it is a Riesz-Fischer map if and only if Ly is surjective.
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2.5.2 Density of Sampling Sets

Let T = {t,} C R be a real sampling set.

I. The sequence {t,} is uniformly discrete if there is a d > 0 so that |t, — t,,| > d for all

II. A uniformly discrete sequence I' = {¢,} is uniformly dense with density AT if there is an
L < oo so that for all n

|tn — n(AT)™Y| < L.

Additional studies of sampling in Hilbert spaces can be found in [Beu61], [Yen56], [Beu66],
[Yao67], [Jer77], and [CA87].
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Chapter 3

Frames

In this chapter the theory of (global) Hilbert space frames is reviewed and some necessary
tools are developed. The theory of frames is due to Duffin and Schaeffer [DS52)], cf., [Dau92],
[DGM86], [HW89], [You80]. Throughout the chapter H denotes a Hilbert space contained in
L2(G), with norm ||.. || = Il '”Li(g) induced from L2(G). Here, G is a group and p is the left
Haar measure.

3.1 Frame Basics

As a concept, frames provide an intermediate ground between the two related notions of
completeness in a space and an orthonormal basis for a space. Recall, a set of functions {¢,} is
complete in a Hilbert space H if the closure of their span is the whole space H, i.e. span {dn} =
H. A set {¢,} is a Schauder basis for the space H if for any f € H there is a unique set of
coefficients {c,} such that f = )~ c,é,. As it shall be seen the statements that a set {¢,} is

a. complete in H,

b. a frame for H,
c. a Riesz basis for H, and

d. an orthonormal basis for H

are progressively stronger. In other words d = ¢ = b = a.
To any set {¢,} one may associate the operator § = Sy defined as

Sf 2 S (f, bn) én-

The frame property can be equivalently characterized in terms of this operator 5, and conse-
quently has been called the frame operator. Specifically the set {¢,} is a frame for H if and
only if there are constants A, B

VfeH, AlfI*<{f,SF) < BlIfI?

such that 0 < A < B < 0o. Note that the frame operator has many “nice” properties including
linearity, continuity, and invertibility. Definition 3.1.1 gives the formal definition of a Hilbert

space frame, its associated frame operator, and the notions of tightness and exactness.
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Definition 3.1.1 a. A sequence {¢,} C H is a frame for H if there exist frame bounds A, B > 0
such that

VieH, AlfI* <14 0a) * < BISIR, (3.1.1)
where summation is over Z.
b. The frame operator of the frame {¢,} is the function S : H — H defined as Sf =

A bn) bn.
c. A frame is said to be a tight if A = B.

d. A frame for H is said to be ezact if the set determined by the removal of any one of its
elements fails to be a frame for H.

Some examples of frames are presented below. From these examples it is seen that tightness
and exactness are independent properties.

Tight and Exact Frame Clearly any orthonormal basis {e,} C H is a tight exact frame
with bounds A = B = 1 since by Parseval’s equality for orthonormal bases 3" | {f, ¢n) |2 = || f||%.
It is exact since the elements are orthogonal and the removal of any one element will cause the
reduced set to fail to be dense in H.

Tight and Non-exact Frame The union of any finite number N > 2 of orthonormal bases
in H yields a tight non-exact frame for H with frame bounds A = B = N. To see this, for each
m = 1,2,...,N let {en,,}, be an orthonormal basis for H. Then by Parseval’s equality for
orthonormal bases

N N
2 fremud P = 30112 = NS

m=1 n m==1

Since each basis {em,}, is dense in H the removal of any one element from

N
LJ {enun}

m=1

will result in a collection of vectors which contains at least one orthonormal basis for H. There-
fore it is dense in H.
For example {e1, e1,e2,€2,€3,€3,...} is a tight non-exact frame with A = B = 2.

Non-tight and Exact Frame A non-tight and exact frame may be generated from {¢,} as

{anen}

where {a,} is a sequence of scalars satisfying 0 < A < a2 < B < oo and there is a pair m,n
such that a,, # a,. Clearly then the set {a,e,} is exact and

S framea) 2 = S22 (fen) ?
) (sgp ) [(fren) P

n

BY |{f,ex) |* = Bl

IN

IN
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The lower bound is similar.
For example {2e1,¢€;,€3,€4,...} is a non-tight exact frame with A =1 and B = 2.

Non-tight and Non-Exact Frame There are many ways to generate non-tight non-exact
frames. For example, the union of a orthonormal basis with a scaled orthonormal basis. An
example is

{61, 261,62,262,63,263, . } .

The following theorem exhibits the close relationship between exact frames and orthonormal
bases. More precisely it states that exact frames are Riesz bases. Riesz bases are by definition
related to orthonormal bases by a topological 1somorph1sm See [You80, p. 188] for a proof of
the equivalence of parts a and b.

Theorem 3.1.2 Let H be an arbitrary Hilbert space and {¢,} be a sequence of elements in
H. The following are equivalent:

a. {¢n} is an exact frame for H.
b. {¢.} is a Riesz basis for H.

c. {¢n} is a bounded unconditional basis for H.

The following theorem states some of the fundamental properties of frames.

Theorem 3.1.3 a. If {¢,} C H is a frame with frame bounds A, B, then § is a topological
isomorphism with inverse S~1, {S~1¢,} is a frame with frame bounds B~! and A~!, and

VEEH, f=3 (f,57¢n)dn =2 (f,¢n) 5 "4 (3.1.2)

in H.
b. If {¢,} C H, let L : H s {2(Z) be defined as Lf = {({f, ¢n)}, cf., (3.2.3). If {¢,,} is a
frame then § = L*L, where L* is the adjoint of L.

Since the frame operator S may be factored [DGM86, Dau90] as L*L an immediate conse-
quence is that

(f,Sf) = {f,LLf) = (Lf,Lf) = |Lf|.
Since {@,} is a frame with frame bounds A and B this implies that
Al < NILAIP < BIAIIP.
Thus,
ILl< B and (LY < A7E,
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where L~! is defined on the range L(H).

It is clear that if A and B are frame bounds for a frame {¢,,} then any other pair A; and
By such that 0 < A; < A and o0 > By > B are also valid frame bounds for {¢,}. It is of
interest to know the smallest upper bound and the largest lower bound which serve as frame
bounds for a frame. This motivates the notion of the best frame bounds. Given a frame {¢,}
for a Hilbert space H with frame operator S, the best bounds A and B are

L {L5h)
A=

_(hSh)
B = SIAE

Since || Lf||? = (f, S f) it follows that the best bounds A, B are also A = ||L~}||~2 and B = ||L]|?.

3.2 Frame Representation

In this section the natural discretization suggested by the frame operator is exposed via
Theorem 3.1.3b. Consider the operator L of Theorem 3.1.3 and its adjoint. The theorem
asserts that L and its adjoint L* are factors of the frame operator S. Explicitly, the operators
L:Hw— (2(Z),and L* : (2(Z) — H are

Lf={{f,¢n)} (3.2.1)

and

L*¢=>_ cutn, (3.2.2)
where f € H and ¢ € £2(Z). 1t is easily verified that in fact § = L*L since for all f € H

Sf=Y_(f éu)bn=L"Lf.
The desired discretization operator L is a mapping from H to £2(Z) and is defined as

L: Ho &Z)
[ {(f, )}

Figure 3.1 depicts the mappings L and its adjoint L*. If {¢,} is a frame for H then the mapping
defined in (3.2.3) is called the frame representation or frame discretization operator. The frame
representation operator L plays a central role in Theorem 3.1.3. Part a of the theorem describes
one method to recover a signal f € H from its frame representation Lf € £2(Z). In part b,
the theorem indicates that the frame operator S has factors L and L*. In addition, Theorem
3.2.1 below states that the frame representation operator L has an inverse when considered on
the range L(H). These facts form the basis for the iterative reconstruction scheme given in
Proposition 3.4.3 and, in turn, the notion of the frame correlation operator discussed in Section
3.3.

A characterization of frame representation operators is given in the following theorem.

(3.2.3)
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Figure 3.1: The mappings L and L*

Theorem 3.2.1 ([Ben93, Theorem 3.6]) The sequence {¢,} is a frame for H if and only if
the mapping L given in (3.2.3) is a well defined topological isomorphism onto a closed subspace
of £2(Z).

Theorem 3.2.1 has three significant consequences worthy of mention. Namely, if L is a frame
representation operator then

a. L is injective (one to one),
b. L(H) is closed, and
c. L* is surjective (onto).

To see the injectivity of the map L suppose {¢,} is a frame for H with bounds A and B and
that Lfy = Lf;. Then

0=||Lfi — LE|? = IL(fi - R)II’ > Allf - ful)?
which implies that f; = f;. Thus, L is injective. Because L is an injective bounded linear

operator whose range L(H), is closed then L* is onto by Proposition A.1.

3.3 Frame Correlation

A concept which arises naturally in frame theory is the notion of frame correlation given in
Definition 3.3.1. It will be seen that the frame correlation is a crucial element in the process of
reconstruction from frame representations, cf. Proposition 3.4.2.

Definition 3.3.1 (Frame Correlation) Let {¢,} be a frame for the Hilbert space H with
frame representation operator L. The frame correlation operator is defined as R = Al

27



The frame operator § = L*L and the frame correlation R = LL* are similar objects and
play similar roles in the theory of frames. In fact, a reconstruction theory may be developed
without ever introducing the frame correlation, ¢f. [FG92]. Hence, one may ask why the frame
correlation is an important object to study? To answer this note that

S:Hw+H,

while
R: L(H) — L(H).

In many cases of interest H will be an infinite dimensional Hilbert space having elements which
can not be directly processed by a digital machine while L(H) will consist of discrete elements,
i.e. countable sets, which (if truncated) may be processed digitally. For example, such an H
is the space of bandlimited functions PWq, and L(H) = {f(t,) : f € PWgq} for some sequence
{t.}. Thus the operator S does not admit a digital implementation while R does.

3.3.1 Properties

The frame correlation matrix R shares many properties of the frame operator §. For
instance, they are both non-negative self adjoint operators which map bijectively onto their
range. The crucial differences, however, are that

a. the range and domain of R is contained in ¢ (Z), and

b. the range of R need not be all of £2(Z).
These two differences directly relate to the issues of

a. digital implementability and

b. representation noise robustness

respectively. As discussed previously the fact that R operates on countable sequences, i.e.
digital signals, immediately suggests that it is possible to implement R on a digital machine.
This is not possible for S. Robustness to noise in the representation is directly related to the
size of the kernel of R. This issue is addressed in Section 3.5.1.

This section is composed of several propositions which illustrate the properties of a frame
correlation RB. The first, Proposition 3.3.2 exposes the matrix representation of the frame
correlation R (of a frame {¢,} for a Hilbert space H) as the Gram matrix associated with the
sequence of elements {¢,} C H. The second, Proposition 3.3.3 compiles a list of useful general
properties of a frame correlation R. Thirdly, Theorem 3.3.4 establishes the ramifications for B
and other equivalences if the underlying frame is exact.

Proposition 3.3.2 Given a frame {¢, } for the Hilbert space H, the frame correlation matrix
R has the matrix representation

>

R =((¢m:4n) = Rmn-

Proof:
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Take any c € £2(Z). Then one can write

Re=LL*c= {(L*C, (an)} = {Z Cm <¢m, ¢n)}

so that
(Re)n = (LL*c)n = ) cm(Pmsbn), (3.3.1)
and
(Re)-1 (b)) (Bodr) (B16) e
(Re)o | =] -+ (9-1,90) (D0,00) (P1,00) --. o |- (3.3.2)
(Reh (p-1,01) (Po0,01) (P1,%1) c1
m

Proposition 3.3.3 Suppose {¢,} is a frame for the Hilbert space H with frame representation
operator L, correlation R and bounds A and B.

a. If H is infinite dimensional then L is not compact; and thus, R is not compact.

b. For each row m of R, lim,,—,o0 |Rm,n| — 0.

For each column #n of R, limy,—,o0 | R n| — 0.

c. If the set {¢,} is an orthonormal basis for H then the frame correlation operator is the
identity.

d. ker R = L(H)*.

e. R maps L(H) bijectively to itself.

f. R = Py R = RPyy)

g. R is self adjoint.

h. R > 0.

Proof:

a. To prove the non-compactness of L a normalized sequence {f,} C L?(IR) shall be chosen
such that {Lf,} has no converging subsequence. Let f, = 1f, ,41] so that [|f,]| = 1. For such
a sequence one has

WL fn = Lfmll = 1L(fn = Fu)ll = A% || fn = fumlls

where the equality holds by the linearity of I and the inequality holds by the frame condition
applied to f, — fm. For our choice of {f,} it is easy to see that ||fn, — fi|| = 2(1 — 6;m n). Thus
one has that

Vn#m, ||[Lfy— Lfn| > 24A%.

Since ¢2 (Z) is complete one may conclude that {Lf,} has no converging subsequences. Hence
L is not compact.
To show R is not compact note that by part e. there is a well defined inverse R~1 of R on

L(H). With {f,} as in part a. define ¢, 2 g:lfle = R™'L(f,/a,) where the normalization
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L

is well defined since a, = |RTILfull = || Lyfull = B™2 > 0. Also we have a, < A~ or
a, 2 > A. As in part a. we may compute

| Fa/@n = Fn/am| = (672 + a7 2)(1 = b6mn) 2 24(1 = 8-

For the sequence {¢,,} C €2 (Z) then
Va#m, |[Ren— Renll = |IL(fu/tn ~ fu/am)|| > 243,

and one concludes that {Rc,} has no converging subsequences so that R is not compact.
b. Since {¢,} is a frame for H then one must have in particular that

Vi 3| (bmr 60) 7 < Bllgmll*-

For the sum to converge it is necessary that | (¢m, )| — 0 as m — oo.
c. Follows from Proposition 3.3.2 since (¢, n) = 6.
d. i/ ker R C L(H)*
Let co € ker R so that Rcg = 0. We will show for all f € H that (co, Lf) = 0. Since L* is
onto then for all f € H thereis a ¢ € L(H) so that f = L*c. Thus,

{(co, Lf) = (L%co, f) = (L*co,L*¢c) = (Reg,c) = 0.

ii/ ker R D L(H)*
Let ¢, € L(H)*. For any ¢ € £%(Z) we have

(RC_L,C) = (C_L,RC>
= (c1,L{L%c)) = 0.

Since (Rcy,c) = 0 for all ¢ € ¢2(Z) then Rc) = 0.

e. Since L is a linear injective map, one need only demonstrate RL is an injective map from
L(H) to L(H) to prove that R is injective on L(H). Write RL = LL*L = LS. Since both L
and § are injective then LS = RL is also. Thus R is 1-1. Since R is self adjoint and 1-1 then
it must also be onto by Corollary A.2.

f. Let ¢ € £2(Z). Clearly, Rc = LL*c € L(H). Thus, R = Pp(3) R and by taking the adjoint
R= RPL('H)

g. R* = (LL*)* =LL*=R.

h. Since L* is surjective for all f € L?(RR) there is a ¢ € L(H) such that f = L*c. Thus,
0> |fI = (L*¢,L*c) = (¢, LL*c) = {c, Re).

|

We have seen in Proposition 3.3.3e that R maps L(H) bijectively to itself. If L(H) is all of
¢2(Z) (L is onto) then R is topological isomorphism on €2 (Z). This can only happen if the
underlying frame is a Riesz basis, i.e. an exact frame. This and other equivalences are the
content of Theorem 3.3.4.

Theorem 3.3.4 Let {¢,} be a frame for H with frame representation operator L, frame cor-
relation R, and bounds A and B. The following are equivalent:
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. L is onto £2 (Z).

o

b. L* is one to one.
c. R is a topological isomorphism on ¢2(Z).
d. R>0

. {#n} is a Riesz-Fischer sequence.

@

f. {¢n} is a Riesz basis.

Proof:
(a. = b.)
From elementary operator theory,

ker L* = L(H)* = (2 (2))* = {0}

so that L* (a linear operator) is one to one.

(b. = c¢.)

Clearly R € B(H,H) since R = LL* and L € B(H,H). R is one to one because L is one to
one (always) and by assumption L* is one to one so that the composition LL* is also one to one.
R* = R is onto by Proposition A.1 since R(H) = L(H) is closed (Theorem 3.2.1b). Thus R is
bijective on £2 (Z) and there exists an inverse R~} on all of £2 (Z). Moreover, |R7!]| < A~! by
dual frame arguments. Thus, R is a topological isomorphism on £2 (Z).

(c. = a..)

Suppose R is a topological isomorphism and L is not onto £2(Z). But R(H) = L(H) #
£? (Z) which means that R can not be onto. This contradicts the assumption that R is a
topological isomorphism.

(b. = d.)
Write
(¢, Re) = (¢, LL*c) = ||L*¢||* > 0.
Since L* is one to one then (¢, Rc) = 0 if and only if ¢ = 0. Thus, R > 0.

(d. = b.)
R > 0 means that for all non-zero ¢ € £2(Z)
0 < (¢, Re) = ||L*¢||>.
If L*C] = L*Cz then
<61 - C2,R(C] - 62)) = ||L*61 - L*02” =0
and we conclude that ¢; = ¢3. Thus, L* is one to one.

(a. <= e.)

By definition {¢,} is a Riesz-Fischer sequence means that for all ¢ € ¢2(Z) there is a
f € H such that ¢ = {{f, ¢n)}. With L the frame representation Lf = {(f,¢n)} this translates
equivalently to the statement that L is onto 2 (Z).
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(c. = 1)

Suppose R is a topological isomorphism on £% (Z). We have Lf = {{f,#,)}. Fix an integer
N and define a new operator Ly as Ly f = {(f, ¢u)},zn- We will show that the removal of
one element from the set {¢, } will fail to be a frame by constructing a non-zero f € H so that
Lyf =0. Let {e,} be an the standard orthonormal basis for ¢2 (Z), i.e. €, = {6;n}. Since R
is a topological isomorphism on ¢2 (Z) then R has an inverse R™! on ¢2 (Z). We may then pick

f=LR ey
so that for this choice of f
Lf=L(L*R'en) = en
and hence Ly f = 0.

(f. = c.)

By definition {¢,} is an exact frame means there exists a topological isomorphism T and an
orthonormal basis {e, } for H so that for all n, ¢, = Te,,. Let L. be the frame representation
associated with the orthonormal basis {e,}. Since {e,} is an orthonormal basis then L. is a
topological isomorphism from # onto ¢2(Z). Similarly L? is a topological isomorphism from
¢2(Z) onto H. Noting that

LT*f ={(T"f,ex)} = {{f,Ten)} = {{f, )} = Lf

we conclude that L = L,T* and R = LL* = LT*TL};. Thus, since each factor of R is a
topological isomorphism R is a topological isomorphism on £2 (Z).
|

3.3.2 Pseudo-Inverse

Proposition 3.3.3e implies that R has an inverse on L(H). This inverse is denoted R~! and
Vee I(H) ¢= R 'Rc= RRlc.
To extend the inverse to all of £2(Z) define the pseudo inverse

Rt £ R7'Pyy, (3.3.3)
where Pp3) is the orthogonal projection operator onto the image of L. Definition 3.3.5 gives
a definition of pseudo-inverse. We note that there are several equivalent definitions with inter-
esting interpretations of the pseudo-inversion process, viz. Appendix C.

Proposition 3.3.3f can be used to demonstrate that as defined in (3.3.3) R' is in fact a
bonified pseudo-inverse. Using Proposition 3.3.3f we have that for all ¢ € ¢2(Z)

R'Re = R Py Re = R™'RPLpqyc = Prpye

and similarly
RRic= RR—IPL(H)C = Ppyc.
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We conclude that RTR = RR' = Py3;). This observation makes the verification of the defining
conditions of a pseudo inverse in Definition 3.3.5 trivial. Thus, 3.3.3 does indeed give the pseudo-
inverse of R. In Section 3.4 an iterative method for the construction of the pseudo-inverse is
presented.

Definition 3.3.5[Gro77, Definition (P)] If T € B(Hi,H;) has closed range, then Tt is the
unique operator in B(Hz,H;) satisfying

(1) TT? is self adjoint,
(2) TT is self adjoint,
(3) TT'T =T, and
(4) TtTTt = T

The following theorem shows that the best frame bounds of a frame are directly related to
the operator norms of the frame correlation R and its pseudo inverse Rf.

Theorem 3.3.6 Let {¢,} be a frame for a Hilbert Space H with best frame bounds A and B
and frame correlation B. Then the frame correlation R is related to the frame bounds A and
B as

a A= R
b. B = ||R]].
Proof:

a. Since {¢,.} is a frame for H then L* is surjective. Hence, for all f € H thereis a c € L(H)

so that f = L*c and one may write for f not zero a.e.
(f,Sf) _(L*¢,SL*¢) (L*¢,L*LL*c) (c,R*c)
IFIE — (L*e,L*¢) ~ {e,LL*c¢) ~ {ec,Re)

(3.3.4)

for ¢ off the ker L* = L(H)*, i.e. ¢ € L(H). The surjectivity of L* then implies the best lower
frame bound A4 is

>

(SF) _ o (e R%)

inf ~=t = .
fen ||flI*>  ceL(ry {c, Rc)
Since R! is onto L(H) for any ¢ € L(H) there is a ¢g € L(H) so that ¢ = Rfco. With this
substitution one has
(., 7%) _ (Bleo BRle) (co,c)

<C, RC) - (RfCO,RRTCQ> - <RTCO,C()).

Thus,

A= inf M=< sup M)_lz( sup ‘<RT"°’C°>|)_1,

w€L(M) (Rtco,c0) | cper(my {co,co) weL(H) (Co,co)
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where the last equality follows since R' is a non-negative operator. Further,

co €EL(H)@ker Rt (co, o) coe2(Z) {co, o)

Where one has used the fact that ker Rt = ker R = L(H)* from Proposition 3.3.3d. The last
equality is a consequence of Fact 2.1.3.

b. The upper bound can be proven by via the dual frame {5-1¢, } with best bounds A’, B/
and frame correlation R'. Since R' = Rt and A’ = B! application of part a. to the dual frame
yields B~! = ||[(R")!]|~ or B = ||R)||.

|

3.3.3 Duality

From Theorem 3.1.3a a frame {¢, } has an associated dual frame {4}, where ¥, 2y 14,

and S is the frame operator. As a frame, {1,} also has a frame representation operator Ly,

where Ly f 2 {{fy¥n)} = {{f, S 1¢n)}. As a matter of notation we may write both L and Ly
to indicate the frame representation with respect to the frame {¢,}. Since S is a topological
isomorphism clearly Ls(H) = Ly(H). With this notation, Equation 3.1.2 may be written as

VieMN, f=LiLyf=LyLsf. (3.3.5)
From this observation we may conclude that
LyLy =LyLy=1

where [ is the identity operator on H. Further, if attention is restricted to the range L(H) we
may write
-1 _
Ly =1Ly

and
~1 _ r=*
L,(/) — L¢.

Moreover, the relation between the frame representation Ly and its dual L, is
Ly=R'RLy=R'LyLjLy,= R 'Ly,
I

where R is the frame correlation associated with the frame {¢,}. Table 3.1 lists the relationships
between the frame bounds A and B, frame operator 5, frame representation L, and frame
correlation R of a frame {¢,} and its dual frame {574, }. Dual quantities are denoted with /,
e.g. S’ is the dual frame operator.
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| Elements | Bounds | Operator | Representation | Correlation |

{#n} (4, B) S I R
{S-1¢,} | (B-1,471) | s§-1 R-1L Rt

Table 3.1: Relation of frame objects and their duals.

3.4 Iterative Reconstruction

Let H be a Hilbert space and take f, € H arbitrarily. Assume also that {¢,} is a frame for
‘H with frame bounds A and B, frame representation L, and frame correlation R. This section
details an iterative procedure for the recovery of a signal f. from its frame representation L f,.
The iterative procedure will generate a sequence {¢,} C L(H) which converges to a c. € L(H)
such that f, = L*c,. Moreover the sequence converges at an exponential rate. The algorithm
for the computation of the sequence {c,,} may be implemented digitally and identified with the
computation of the inverse R~! of the frame correlation R.
3.4.1 Frame Operator

It may be easily shown [Ben92, Algorithm 50] [Ben93, Section 6.6] that since {¢,} is a frame
for H with frame bounds A,B

2 B-A
- Q< =
=235 g3 <"
so that by the Neumann expansion,
2 & 2 :
kR E — J .
5 A+Bj=O(I A+BS) ’ (3.4.1)

where I is the identity operator in H. For any f. € H applying (3.4.1) to S f yields
fo= 3T = ASY (M) fu, (3.4.2)
J=0

where A = 2/(A 4+ B).

An iterative procedure for the recovery of f. from § f. could be constructed by 3.4.2 as a
difference equation, e.g. [FG92], [CFS]. However, such a procedure would not be directly digi-
tally implementable in the case that the underlying Hilbert space H consists of analog signals.
Instead we will focus on iterative methods for reconstruction which are digitally implementable.
These methods utilize not the frame operator S but the frame correlation R.

3.4.2 Frame Correlation

With a view toward digital implementation it is desirable to construct an iterative algorithm
for the recovery of f. from Lf,. To do this we first shown that I — AR is a contraction on L(H).

Lemma 3.4.1 Let {¢,} be a frame for H with frame representation operator L, correlation
R and bounds A4, B. If 0 < A < 2/B then [[I — AR||p3) < 1 and || — )‘RHZZ(Z) =1if {¢p} is

not exact. In particular one may take A = 2/(A + B).
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Proof:

Let L’ and R’ be the dual frame representation and correlation respectively. Since (L')* is
surjective then for any f € H there is a ¢ € L'(H) so that f = (L’)*c. This together with the
fact that {S~1¢,} is a frame for H yields

B! (¢, R'c) < {c,(R)c) < A {c,R'c). (cf. Equation (3.3.4))
Letting ¢ = (R')co one has
B~ (Rco, co) < {co,c0) < A7 {Reo, o) -
For all nonzero ¢g € L'(H) this means

A< (Rco, co)

< B.
~ (co,co)

Thus one has for A > 0

(I = AR)co, co)

(
1-AB <
- {co, co)

<1-24
and combining the facts that I — AR is self adjoint, cf., Proposition 3.3.3g, and fact 2.1.3

<max{|1 - AA|,|1 - AB|}. (3.4.3)

[{(/ = AR)c,c) |
I-AR = sup
I |z (ry S ed

We would like to find a lambda such that ||[I — AR||(3) < 1. This condition is satisfied for all
A € (0,2/B). In particular if A = 2/(A + B) then

11— AA| =1~ AB| = (B - A)/(A+ B) < 1.

For this choice of A we have proven that || — AR||z(x) < 1. Clearly, for all nonzero ¢ taken from
ker R = L(H)* one has K22l = 1. Since £2(Z) = L(H)® L(H)* then |1 - ABllp(z) = 1
if L(H)* = ker L* # {0}, i.e. by Theorem 3.3.4 {¢,,} is not exact.

n

Proposition 3.4.2 The signal f, may be recovered from its frame representation L f, as

fe=2A i L*(I - ARYLf,, (3.4.4)

3=0
where L*c = Y ¢y, for ¢ = {c,}-

Proof: Since (Lf,c) £ (f, L*c) and

(Lf’c) = Zzn (f,¢n) = <f,zcn¢n>7

one obtains the formula for L*e.
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Because of (3.4.2) and the fact that S = L*L, it is sufficient to prove
o0 i oo X
AY L*(I = ARYLf.=> (I - AL*LY(AL*L) .. (3.4.5)
3=0 7=0
The j = 0 terms are clearly the same in (3.4.5). Assume
AL*(I = ARYLf. = (I - AL*LY(AL*L)f.. (3.4.6)
Then, using (3.4.6), compute

AL*(I - AR)'™F1Lf, AL*(I = ARY’Lf. — AL*(I — ARy ARLf.

= MI-AL*LYL*Lf.— MI = AL*LY L*L(AL*Lf.)
= MI—=AL*LY(I - AL*L)L*Lf.
= MI-AL*LY*'L*Lf,,

and the result follows by induction. |

Proposition 3.4.2 leads directly to Algorithm 3.4.3 which details an iterative reconstruction
procedure for the recovery of the signal f, from its frame representation Lf.. Moreover, this
iterative procedure will converge at an exponential rate.

Algorithm 3.4.3 Let {#,} be a frame for a Hilbert space H with frame representation L,

correlation R and bounds A, B. Suppose cg =3/ f« is the frame representation of a signal
f« €H.set fo=0. f A=2/(A+ B) and hy, c, and f, are defined recursively as

he 2 Alen,
A
Cn+t1 = Cp — Lhn,
A
fn+l = fn + hn’
then
a. lim f, = f., and
b. f"}:f* < %a", where & 2 I = AR||Lr) < 1.
Proof:

a. An elementary induction argument shows that
Vn, fap1 = AL* (Z(I - ,\R)J') co-
=0

Consequently, by Proposition 3.4.2, one has

lim f, = f..
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b. Write
fo = £l = (a1 = fo) + (Fatz = faw1) + (farsz = fug2) -l

< D M fwr — il
k>n
= Z [AL*(I — AR)"L f.||
k>n
< DA = AR g I LI | fl
k>n
< AB (Z a") [ £l
k>n
= (=) »i%
< gannf*” (by Equation (3.4.3).)

Algorithm 3.4.3 underscores the importance of the correlation frame operator R in the
reconstruction process. Formally one may rewrite (3.4.4) as

f.=L*R7Lf.. (3.4.7)

Note that if R is known apriori the inverse frame correlation R~! can be computed once (off-line)
and stored for future reconstruction computations via (3.4.7).

A crucial element in determining convergence of the algorithm presented in Algorithm 3.4.3
was the fact that co = Lf, and in particular that ¢g € L(H). In fact, if ¢¢ is not entirely in
L(H) then the algorithm will not converge, cf., Lemma 3.4.1. This issue is addressed in Section
3.5 where a second algorithm is presented which will converge on all of ¢2 (Z).

Remark 3.4.4 It is important to note that Algorithm 3.4.3 may be implemented digitally.
That is, the sequence {} 5, cx} may be generated entirely on a digital processor from the
initial representation co. In practice the iterative algorithm will be terminated at some finite
iteration N. The sequence {chvﬂ ck} is related to fy as fv = L* sz=1 ct. The final step

in converting the digital representation Efcvzl ¢k to fn involves a generalized digital to analog
procedure well determined by L*.

3.5 Noise Robustness

With respect to frame representations of signals there are two domains in which noise may
perturb a signal. The first space is the Hilbert space H C L%(IR) and the second is its image
under L, i.e., L(H) € €*(Z). The former space is called the signal space and the latter the
coefficient space.
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3.5.1 Coefficient Noise and Non-exactness

Suppose f € H is a signal of interest with frame representation Lf € L(H). There are
various sources of perturbation which may occur in the coeflicient domain. For instance, the
representation L f may be communicated, stored, or retrieved incorrectly. A more direct issue
is the representation of the real or complex valued coefficients Lf on a finite precision digital
machine. Such a representation requires quantization of the coefficient sequence. Letting @) :
R — {l},l3,...,lo8} C R be quantization by a fixed number N of bits, we have at our disposal
not Lf but Q(Lf). Quantization may be viewed as noise in the coefficient domain.

It is natural to investigate the robustness of frame representations with respect to coeffi-
cient noise. Clearly, frame representations would be of little use if small perturbations in the
coefficient domain destroyed large amounts of information in the signal domain. The following
argument, cf., [DGM86] and [Dau92, Section 3.6], asserts that frames which are far from ex-
act, i.e. have a large degree of linear dependence, exhibit robustness to noise in the coefficient
domain.

Suppose one has a noise corrupted version ¢ of a signal f, so that

¢c=Lf+d,
where d is random noise which may be uniformly distributed. Reconstructing from ¢ entails
L*RY% = L*R7'Prpgy(Lf + dj+ d) = L*R™Y(Lf + dy),

where d = d} + d is the orthogonal decomposition of d with respect to L, i.e. djj € L(H) and
d1 € L(H)*. Thus, all the noise energy outside the range L() is automatically nullified in the
reconstruction process. For a uniformly distributed perturbation d, the larger the kernel of L*
the more energy in the noise will be nullified and the more noise tolerance will be achieved. Since
the kernel of L* being large is equivalent to the underlying frame having a large degree of linear
dependence one may conclude that non-exactness yields robustness to coefficient imprecision.
Tacitly assumed in the above argument is a method for the reconstruction of a signal from
its corrupted frame representation. The reconstructed version f; from a noise perturbed frame

representation ¢ = Lf + d is
A

ft = L*RIC.
Note that ¢ need not be in the range L(H). In Section 3.4 an iterative algorithm, Algorithm
3.4.3, was presented for the reconstruction of a signal from its uncorrupted frame representa-
tion. However, as was shown earlier, this algorithm will not converge for arbitrary initial data,
i.e., representations outside the range L(H). Here, a second algorithm is provided which will
converge on all of £2(Z). This algorithm is given as Algorithm 3.5.3.

Our approach is to modify Algorithm 3.4.3 so as to alleviate the problem of initialization
with a coefficient sequence outside the range of L. As a first step note that Re € L(H) for
all ¢ € £2(Z). Thus, if ¢y were initialized to R¢ then all that would be required is to provide
an algorithm for the computation of R=2 on L(H) instead of R~! on L(#). Before such an
algorithm may be presented, it is necessary first to attend to some technical details.

Lemma 3.5.1 Let H; and H, be two Hilbert spaces. If A € B(H;,Hz) then

I -A*A|<1 < VzeH;, 0< linf |Az|| < sup ||Az| = ||A]| < V2,
|

[J]|=1 zj|=1
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where [ is the identity operator on H;.

Proof:
Since I — A*A is self adjoint, by Fact 2.1.3

=44 = sup |{a,(I - A*A)s)]
[l=]]=1
= sup [1 - [ldsl?l.

ol|=1
Therefore the condition that || — A*A|| < 1 is equivalent to the two conditions

sup (1 - ||Az||*) =1 - mf ||Aa:||2 <1
lll|=1 ll=l

and
sup (]|Az|*> - 1) = sup ||Az[*-1<1,

ll=ll=1 ll=ll=1

which further translate to

ulﬁf |Az||> >0 and sup ||Az|® < 2.
ll=li=1

With the aid of Lemma 3.5.1 it can easily be shown that the operator R~2? may be approx-
imated as a Neumann series. To do this it is first shown that for a proper choice of relaxation
parameter, e.g., A = v/2/(A + B) the operator I — (AR)? is a contraction on the range L(H).
This is the content of Lemma 3.5.2.

Lemma 3.5.2 Let {¢,} be a frame for H with frame representation operator L, correlation R
and bounds A, B. If A = v/2/(A + B) then ||I — (AR)?||px) < 1.

Proof:
Take A = AR and H; = Hy = L(H) in Lemma 3.5.1. Then

V2
+ B

Al = NIl = -

and

[[ARe]| > 0
cer o=t

since by Proposition 3.3.3e R is 1-1 on L(H) and ||c|| = 1. The result follows from application
of Lemma 3.5.1.
|

Let A = \/5/(A‘+ B). Since I — ()\R)2 is a contraction, the Neumann series

NS (I - (AR
k=0
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will converge to R~2 on L(H). Formally, with € an arbitrary element from £2 (Z) and ¢ 2 pe

n

A2 ST = (AR))Feo,

k=0

will converge to (R™?)RE since.co € L(H). In fact, it shall be seen that

t -1 2% _ 1\k :
R'= lim X Y (I-(AR®)*R (3.5.1)
k=0
where R! is the pseudo or generalized inverse [Gro77] of R. It is easy to check that as defined
in Equation 3.5.1 Rt does indeed satisfy the requirements of Definition 3.3.5.

Algorithm 3.5.3 Let {¢,,} be a frame for a Hilbert space H with frame representation L,
correlation R, and bounds A and B. Suppose ¢ € £2(Z) is the corrupted frame representation
of a signal f, € H. Set co = R€and fo = 0. If A = v/2/(A + B) and hy,, c, and f, are defined
recursively as

he 2 A2L%c,,
A
Cnt1 = Cp— RLhy,
A
fn+1 = fn + h’n,

then A
a. lim f, = ft = L*R'¢and
b. ||ft — fall < Ma™, where M < 00 and « 2 I - (AR)?Y < 1.

Proof:
a. As in Algorithm 3.4.3, an elementary induction argument shows that

i=0

Vn, fup1 = AL (i(z - (,\R)z)j) co-

Consequently one has
lim f, = L*R'C.
b. Write
fwt1 = fall = Wall = IAZ*(T = QR < (LA (I = (ARY) |1 RE < M'a™,
where M’ = A2B3/2||¢]| < oo since ¢ € £2(Z). Thus,

aTL

1t = fall < 30 M'e* = M'—— = Ma".

k>n -

Iterative processes for the construction of generalized inverses have been well investigated,
e.g., [Sho67], [Pet67], [Alt60], cf., [Gro77] for a broad overview.
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3.5.2 Signal Noise and Frame Coherence

Intuitively, the noise in a signal is that part which lacks structure or coherence. For example,
in auditory signals one can readily identify noise with incoherent garbled or hissing sounds.
Implied in the use of the term “coherence” is some point of reference with which other points
are coherent. It seems reasonable to adopt a (properly chosen) set of primitive functions as
such a reference point. In speech, examples of coherent structures are the phonemic primitives
which have been learned by the individual; and a pertinent collection of primitive functions
may be extracted from the study of the cochlear mechanics of ear [BT92a, BT92b).

Suppose {¢,} is a collection of appropriate primitive functions. In simple terms, a signal
f is coherent with respect to the set {¢,} if that signal may be approximated well by a linear
combination of a relatively small number of members of {¢,}. Mallat [MZ92a] has used a
similar notion with respect to arbitrary “dictionaries” of functions. Clearly such a primitive
set can not be chosen arbitrarily if it is required that f may be approximated by a linear
combination of its members. In addition, for practical implementations it is required that such
approximations may be carried out in a numerically stable manner. Both of these requirements
are satisfied if the reference set {¢, } is a frame for a large enough Hilbert space, i.e. one which
contains all signals of interest.

For these reasons attention shall be limited to collections {¢,} which are frames. Conse-
quently, considered as “non-noisy” are those signals which are coherent with respect to the
frame {@,}. This view of coherent signal versus noise admits a relatively simple procedure for
the recovery of a signal embedded in noise. This procedure is now outlined.

Let H C L%(IR) be a Hilbert space of interest and {¢,} C H be a frame for H with frame
representation operator L. Suppose one has a signal f, € H which is coherent with respect
to {¢,}. Let f, be a noise corrupted version of f., where f, = fu + w and w € L%(R) is
non-coherent with respect to {¢,}. Note that f, is not necessarily contained in M.

From the discussions in Section 3.4 and Section 3.5.1, if {¢,} were a frame for all of LZ(IR)
then

w=L*R'Lf,

would perfectly recover the noisy signal. Since our main objective is to reject the noisy portion
w, this approach is clearly inappropriate without modification. The question naturally arises
as to whether there is some processing which may be performed in the coefficient domain L(H)
which will act as a noise suppressant in the signal domain H. This, in fact, is the crux of our
approach.

Consider a truncation operator F' : L(H) — FL(H) which nullifies or truncates coefficient
sequences in places where the representation Lf, of f, has small coefficients (less than a small
positive real number §). That is for any ¢ € L(H)

(FO) = { cr (L)l > 8

1 0, otherwise

Clearly, the operator F' = Fy, s depends on the signal f, and the threshold §. It is easy to
establish that F is a linear bounded operator. In fact | F|| = 1. In Chapter 5 properties of such
truncation operators are fully developed.

Now consider a reconstruction procedure which starts not from the whole sequence L f,, but

from the truncated sequence Fy, sLf,. In this case we may define a reconstruction fs of the
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coherent signal f. from knowledge of its noise corrupted version f,, as

-
fs = L*R'Fy, sLf.

Define the 6 truncated version of the sequence Lf,, as cs 2 Fy, sLf,. Expanding f, and
using the linearity of the operators Fy, s and L we have

cs = Ffw,(sL(f* + w) = FfmgLf* + Ffwygl/w.

The hope of this scheme for noise suppression lies in the expectations that
a. for a coherent signal f, the truncation Fy,sLf. = Lf,, and

b. for a non-coherent signal w the truncation Fy, sLw =~ 0.

Consequently we expect that ¢s = Lf,. In this case we may view ¢s as a noisy version of Lf
and use Algorithm 3.5.3 with initial data co = ¢5 to perform the noise suppression.

Let us look more deeply into the question of why this thresholding procedure should be
expected to perform noise suppression. If {¢,} is a frame for H with frame representation
operator L then there is the following norm equivalence property. Namely, there are positive

scalars A and B such that
VieH, AlfI* <ILAP < BlIAIP

We may interpret such a relationship as an approximate energy preservation between the do-
mains H and L(H). Thus, for all signals f € H, the representation L f must have approximately
the same energy as the original signal; however, the distribution of the energy among the co-
efficients in Lf is dependent on the signal’s degree of coherence with the underlying frame
{#n}. In fact, for a signal f, which is coherent with respect to the frame {¢,}, i.e., one which
is represented by a linear combination of a relatively few members, the frame representation
norm equivalence necessarily implies that these few coefficients must contain most of the signal
energy and hence have a relatively large magnitude. Similarly, a pure noise signal w, being
incoherent with respect to the set {¢,}, must have a frame representation in which the noise
energy is spread out over a very large numer of coefficients. Hence, these coefficients must have
a relatively small magnitude. In light of this, if we now consider the noise corrupted signal
fw = f« + w, for an appropriate value of the threshold é the small coefficients in Lf, due to
the non-coherent portion w will be suppressed while the larger coefficients due to the coherent
portion f,, will be preserved under truncation. Thus, the iterative Algorithm 3.5.3 initialized
with ¢g = Fy, sL fy is in fact a technique for the suppression of noise.

Note that these arguments depend strongly on the notion of coherence, and more specificly
coherence with respect to a particular frame. It should be clear that given a particular ap-
plication appropriate frames must be chosen. For example, in the context of music processing
there is a natural coherence with respect to the notion of time frequency evolution. A natural
description of a piece of music involves the idea of frequencies moving in time. If our objec-
tive is to remove noise from music, or audible signals in general, then it seems reasonable to
ask for frames which are well localized in both time and frequency. This naturally leads to
incorporation of wavelet or Gabor frames as the reference for coherence.

Truncations of this form are one of the motivating factors spawning the notion of a “local”
frame. Roughly speaking a local frame for a Hilbert space H is a frame for a much smaller
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space H( f.) in H generated by a specific signal f, € H. It is also required that f, be contained
(almost) in H( f,). Local frames are the subject of Chapter 5. We note that numerical examples
of the performance of the noise suppression abilities of such a scheme are presented in Section
6.3.1.

3.6 Numerical Verification

In this chapter two algorithms have been presented for the recovery of a signal from its frame
representation. It has been established that Algorithm 3.4.3 will converge to the original signal
provided that it is initialized with a valid frame representation, i.e. a coefficient sequence entirely
in the range of the frame representation operator L. If, however, the frame representation is
perturbed so that it is no longer in the range of L then this algorithm will not converge.
This situation spawned the development of a second algorithm which would contend with
perturbations in the frames representation which fall outside the range of the operator L.
It has been established that Algorithm 3.5.3 will always converge to a best approximation to
the signal given its perturbed frame representation.

To illustrate the situation we perform the following experiment. We generate two frames ®;
and @, such that ®; has no redundancy and that ®; has a bit of redundancy. More precisely

20
we construct a non-redundant frame ®; = {¢1(11) \ for its span {®;} C R? and a redundant
no

— [4n? : 20
frame &, = { ¢r, i for its span {®2} C R*° such that
e both @; and &, have the same frame bounds (A,B) =(0.5,1.5), and

¢ dimker Ry = 20 and dim ker Ry = 19.

where R; and R, are the frame correlations of ®; and ®; respectively. Thus, there is no
redundancy associated with the frame ®; while there is one degree of redundancy associated
with the frame ®,.
Let L; and L, be the respective frame representations associated with ®; and ®,. Next we
choose a ¢y € R% as
co = (111...1).

Thus ¢o is contained in L;(H) but ¢ is not contained in Lo(H).

The results of initializing both Algorithm 3.4.3 and Algorithm 3.5.3 with c¢ is displayed in
the figures. In Figure 3.2 the top graph displays the norm of the sequence {c,} as a function
of the iteration number when Algorithm 3.4.3 is initialized with c¢ for the frame ®;. The
bottom graph displays the norm of the sequence {c,} as a function of the iteration number
when Algorithm 3.5.3 is initialized with co for the frame ®;.

In Figure 3.3 the top graph displays the norm of the sequence {c,} as a function of the
iteration number when Algorithm 3.4.3 is initialized with ¢o for the frame ®;. The bottom
graph displays the norm of the sequence {c,} as a function of the iteration number when
Algorithm 3.5.3 is initialized with cg for the frame ®,.

Recall that in each algorithm a sequence {f,} is generated which is given by

fo=1L" Xn:cn.

k=0
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Figure 3.2: Comparison of the {llexll} for the case of the non-redundant frame ;.

Thus for convergence we must have ¢, — 0. In the figures we have plotted ||c,|| as a function
of the iteration number. Since the vertical axis on the graph is logarithmic a negatively sloped

line indicates an exponential rate of decay.
For the frame ®; we can see from Figure 3.2 that both algorithms exhibit the predicted

rate of exponential decay for {[|ca|l}. Both algorithms are expected to converge because ¢o is
in the range of L;. For the frame $,, however, cg is not in the range of L, and as a result it is
expected that Algorithm 3.4.3 will not converge. These expectations are confirmed in Figure
3.3. Figure 3.3 clearly shows the following:
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Figure 3.3: Comparison of the {]|ca||} for the case of the redundant frame ®,.
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a. Algorithm 3.5.3 convergence properties are identical to non redundant case, while
b. Algorithm 3.4.3 fails to converge since ||c,|| approaches a constant.

Thus, the experiment confirms the predictions of the theory.
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Chapter 4

Sampling in RKHS

With the material of the previous chapter as motivation, a generic discrete represenation
of analog signals is developed and relations are made to frames and irregular sampling in
certain reproducing kernel Hilbert spaces. The discrete representations studied here come from
samples of group representation transforms on lattices contained in appropriate groups. These
representations are quite general and rely on a familiarity with the material in Section 2.3. In
the last sections of this chapter three special cases of discrete representations are studied in
detail. Respectively, these three special cases result in the study of Paley-Wiener frames, Gabor
frames, and wavelet frames.

4.1 The Generic Representation

Let H be a Hilbert space contained in L?(IR) and let G be a group with representation II
on M. Suppose g is an admissible function, i.e. g € A, ,(H) where p is the left Haar measure.
The generic discrete representation of a signal f € H (in general) is an irregular sampling
over the group G of its group representation transform V,f € L2(G). Recall that the group
representation transform V; is a mapping V; : H — L%(G) given by (2.4.1) redisplayed here for
convenience

(Vo £)(z) = (£, 1i(2)g).

For a generic discrete representation the sampling set I' is some countable irregular set of
points from the group G
I'={z,} CG. (4.1.1)

Thus, T is a discrete lattice contained in the group §. The corresponding lattice-value pair
A(f) is
A(f) = (T, {Vaf(2)}4er)- (4.1.2)
A(f) is a lattice in G together with the group representation transform of f evaluated at all
the points on that lattice. The fundamental concern of discretization theory is the following
question:
What conditions on the sampling set ' allow the recovery of f from A(f)?
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As we shall see this question is related to the frame properties of the collection

{(2)g}ser - (4.1.3)

4.1.1 Frames and Sampling in V,(H)

In Chapter 3 it was seen that collections of elements from a Hilbert space which are frames
have associated discrete representations characterized by a topological isomorphism L on a
closed subspace of £2(Z). As a result there are numerically stable iterative algorithms for the
reconstruction of signals starting from their frame representations.

An underlying theme in sampling theory is the connection between boundedness, reproduc-
ing kernels, and sampling expansions. In Section 2.2 it is shown that, via the Riesz representa-
tion theorem, the condition that all members of a functional Hilbert space satisfy a pointwise
bound implies a reproducing kernel for that space. Thus, loosely speaking we may say that
boundedness leads to reproducing kernels. In Section 2.4 such a pointwise bound is easily
established (via Cauchy-Shwarz) for members of V,(#). The reproducing kernel for Vy(H) is
given explicitly in 2.4.4 as

K = Cg(V_qg ),

where ¢, is some constant. The accompanying reproducing formula is
VE e Vy(H), F(z)=(F*K)(z)=(FT:K)p

for all z € G. From this we may conclude that knowledge of the samples { F(z,)} of a function
F € V,(H) is equivalent to knowledge of the inner products {(F s T, K) Iz (g)}.

In the spirit of Chapter 3 this observation leads us to consider discretizations £ : V,(H)
02 (Z) defined as

LF = {(F,Ts,K)13 ()} = {F(wn)}
with the adjoint £* : £2(Z) — V,(H)

L*c= ch T, K,

where F € V(M) and ¢ = {c,} € £2(Z). Recall that for a fixed zo € G the zo-translation T, F
of a function F € L%(G) is Ty, F(z) = F(z5"'z). Because LF consists of irregular samples of F,
this discretization allows us to develop expansions which recover F' from its irregular samples

in G provided the collection
{Tan}

is a frame for a large enough subspace of V,(H). For example, if {T,, K} were a frame for
Vy(H) then any F € Vy(H) could be reconstructed, viz. (3.4.7), from LF as
F = L*RY(LF),

where R = LL* is the frame correlation. Since LF = {F(z,)} this is a sampling expansion for
reconstructing a function F’ which is an element of the reproducing kernel Hilbert space V,(H)
from its sample values. Together with the previous boundedness arguments, this observation
justifies the statement that boundedness implies RKHS implies sampling expansions.
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Our main interest is, however, not to reconstruct group representation transforms from their
irregular samples. Our main interest is, rather, to develop discrete representations of signals
from H with associated reconstruction algorithms. It turns out that irregular samples of group
representation transforms are in fact exactly the type of discrete representation which we seek.
The two are essentially related by the group representation transform and its “inverse”. To
make this notion of inverse precise Proposition 4.1.1 identifies the proper spaces in which the
group representation transform has an inverse.

Proposition 4.1.1 The group representation transform V, has a well defined inverse when

restricted to a subspace Hy 2 span {Il(z)g} s mapping onto its closed range V,(Hy) =
Vs(L3(R)).

Proof:
Clearly V, maps onto its range. We show that V; : Hy — V,(Hy) is one to one. Let
f1, f2 € Hy and suppose V, fi = V, fo. This means that forall z € G

(f1,1I(z)g) = (f2, [(z)g)

(fr = f2,1I(z)g) = 0.

From this we may conclude that (fy — f;) L Hy. Since Hy is a linear subspace (f; — f2) € Hy.
Thus, f1 — f; must be zero. We have shown that V, : Hy — V,(Hyv) is bijective and therefore
has a well defined inverse V1 : Vy(Hy) — Hy.

||

In specific cases, e.g. wavelet and Gabor, it can be shown by approximate identity arguments
[HW89] that the group representation transform V, has a well defined inverse on its range. In
fact, if f € Hy we may formally write

f= %((m)(w),m>

LZ(9)

in L?. Figure 4 depicts the group representation transform mapping V, and its properties on
different domains and ranges of interest.

In light of Proposition 4.1.1 and the operator £* it is clear that only functions which are
contained in Hy have any hope of being represented by linear combinations of {m(z,)g}. Thus,
we require that H C Hy.

To make the connection between irregular sampling in V,(H) and discrete representation in
H fix o € G and consider the function II(z¢)g € H. Since II(zo)g is an element in H we may
compute its group representation transform as

(Voll(z0)9)(z) = (I(z0)g,1I(x)g)

(9,T1(a5")T(=)g)

(9,U(z5"2)g)

(Vog)(@5'@) = TuyVyg(2) = €5 T K (2).

i
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Figure 4.1: The group representation transform V; on different domains.

From this calculation it follows that for fixed a z € G the functions II(z)g and ¢ T K are group
representation transform pairs. This relationship is denoted as

Ve e G, II(z)g LR cZTxK.

The sampling operator £ whose domain is V,(H) has an associated discretization operator
L whose domain is H. Let F = V,f. Then by the reproducing property and Corollary 2.4.2

F(zn) = (B, To K) 136y = (f, 1(20)g) -
This suggests the discretization L : H — % (Z) defined as
Lf = {F(zn)}
with the adjoint
L'c= chH(a:n)g.

Thus, questions about the frame properties of the sequence {7, K} in Li(g ) may be translated
to questions about the frame properties of the sequence {II(z,)g} in H.

At this point it may prove fruitful to present an example. Lets take g as the Dirichlet kernel
g = dazq and G = (R, +) having the group representation 7,. With these choices we shall see
that the situation reduces to the case of sampling in the bandlimited space PWg. The group
representation transform associated with these choices of g and G is

‘/gf = <f7 H(xn)g) = <f’ T:L‘,.d27rﬂ) = Pﬂf,

where Pq is the orthogonal projection operator onto PWgq. Thus, V, maps L%*(R) onto PWy.
Now Hy = span {II(z)g} = span {7.d2rq} = PWq. Thus, V, = Py trivially has a well defined
inverse when considered as a map V, : Hy — Vy(Hv), i.e. Po: PWg — PWq, since it is the
identity on PWgq. It is then evident that the discretization L = L is

Lf = {(f,7wad2ea)} = {(Paf)(2n)}
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[ Object | Group Transform Range | Group Transform Domain |
Space Vy(Hv) = span {T, K} Hy = span {II(z)g}
Kernel K g
Translation Te Ty
Group/Representation (G,), U(z) (R,+), 7
Atoms {T,,. K} {m(xn)g}
Discretization LF ={F % K(z,)} Lf ={{f,I(zn)g)}
Adjoint Lc=) e T, K L*c¢=) com(zn)g

Table 4.1: Group representation transform relations in the generic case.

with the adjoint

L*c = Z CnTe,dorg-

Thus, with these choices of g and G it is clear that it is only possible to reconstruct signals from
their samples { f(z,)} if they are members of Hy = PWy.

| Object | Group Transform Range | Group Transform Domain |
Space Vy(Hv) = PWq Hy = PWq
Kernel dz,.-n d21rﬂ
Translation Te Ty
Group/Representation (R,+), 7 (R,+), 7
Atoms {1z, doxa} {Te.d2z02}
Discretization Lf ={Paf(zn)} Lf ={Paf(z,)}
Adjoint LXe=) enTy, darg L*c =) cnTe,dorn

Table 4.2: Group representation transform relations for the case ¢ = darq and G = (R, +).
The situation reduces to sampling in PWj,.

Similar tables may be constructed for the wavelet and Gabor cases where G is the affine
group G4 in the wavelet case and G is the Heisenberg group Gy in the Gabor case. Since g
may be taken as any admissible function (almost arbitrary) there are many such tables that
may be generated. For the cases of the wavelet and Gabor transforms we shall refer to the
generic Table 4.1. In the last sections of this chapter we will look in detail at three specific
cases: Paley-Wiener, wavelet, and Gabor.

4.1.2 Weighted Frames

Let {w,} C IR be a sequence of strictly positive weights. In this section we derive operator
theoretic characterizations for weighted sets

{wnIl(zn)g}

to form frames for Hy = span {Il(z)g}. In other words, we are interested in sufficient conditions
on a set I' = {z,} C G which insure that the set of functions {w,II(z,)g} is a frame for the
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space Hy. Recall that the measure of a set £ C G is

W(E) = [ du(a). (4.1.4)

Let {V,.} C G denote a set of mutually disjoint connected regions from G, corresponding to
a set of sampling points {z, : z, € V,,}. It is also required that the regions {V,} cover all of G,

ie.

U Vo=G.
The sampling set {z,} is regular if there exists such a sequence of mutually disjoint connected
regions from G and some compact set V' C G such that

Vo, 271V, =V.
For general irregular sampling sets it is required that there is a compact set V' C G such that

Uw;IVn =V.

In addition, to each region V,, we associate the characteristic x, 2 1(V,,) defined as the
indicator function of the set V,,. Thus the set of functions {x,} forms an orthogonal partition
of L2(G). We will call such {V,,} a disjoint covering of G and such {z,} an admissible sampling.

Let Hy = span {Il(z)g} C L%(G) where u is the left Haar measure. Recall that Vy(Hy) is
a reproducing kernel Hilbert space with kernel K, i.e.

Here, T, is the translation operator in G and for convenience define K, 2 T.K. The inner
product for Vy(Hy) is inherited from L2(G). :
Now, define the piecewise approximation operator P : V,(Hy) — L*(G) as

A
PF = > (F,K,,) 13,(6) Xn (4.1.5)

which depends on {z,}. Note that its adjoint, P* : L2(G) — V,(Hv) is

A

PR =) (R, Xn) 12(g) Kzns (4.1.6)
and of particular interest is the fact that
VF € Vy(Hy), P*PF =3 (F, Ko,)p2 ) lIxnllZz(6)Kon- (4.1.7)

From this calculation it can be seen that P*P is the frame operator 5, for the weighted
collection {u(V,)K,}. This fact leads directly to Theorem 4.1.2.

Theorem 4.1.2 Let V,(Hy) be a RKHS with reproducing kernel K. Let {z,} C G be an
admissible sampling. Then set {u(V,)K,,} is a frame for V;(Hy ) if and only if there exists
constants 4 > 0 and B < oc such that

VF € Vy(Hv), AllFlZsq) < IPFllZz6) < BlIFlZz)

where PF = 5" F(z,)1v,.
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Proof:
From (4.1.7) we have

HPF||%?‘ (0) = (PF,PF)12g) = (F, P"PF)pa(g) = (F,SuF) 13 (g)-

Corollary 4.1.3 With the hypotheses of Theorem 4.1.2 in place if
A
d = |[I-Pllpyg <1

then {u(V,)Ky,} is a frame for V,(Hy ) with frame bounds (1 — d)? and (1 + d)%.

Proof: For any F € V,(Hy) write
l 1Fllzz2(0) — IPFllLz(0) |2 < \IF = PF|Z2(g) < M = Pllzz )1 FllZz(6) = d*IFll72 g
so that
VF € Vy(Hv), | IFllzag) — IPFlizaey | < dllFllize)
leading to

VF € Vy(Hv), (1= dlIFlz) < IPFllzz) < (1+ DllFlc0),

and the result follows by invoking Theorem 4.1.2. [ |
The analog of Corollary 4.1.3 in the domain Hy is given below.

Corollary 4.1.4 With the hypotheses of Theorem 4.1.2 in place if d 2 IT - P“L’ﬁ(g) <1
then {u(V,)II(z,)g} is a frame for Hy with frame bounds (1 — d)? and (1 + d)%.

The following theorem is a slight generalization of the material appearing in [0S92].

Theorem 4.1.5 Let {V,,} be a disjoint covering of the group G generated by the sampling set

{z,} CG,and V = Uz;Va. Let Vo(Hy) C L2(G) be a RKHS having reproducing kernel K
(u is the left Haar measure). Define the quantities

fl

a2 o / |K, — K| du
g
PaN
G & supoeg Y [ 1Ko(0) = Ku(0)] dp(a).

If didy < 1 then {u(V,)I(zy)g} is a frame for Hy.
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Proof:
With P as in 4.1.5, write

I = P)FlZzg)y = IF =3 F@a)xallZzo)

I3= (F = Fen)) xallZz(0)

LI (F @) - Fa) e duta)
= /g > (F K. - Ka,,,)xn(rlc)l2 du(z)
- /gz (F, Ko — Kz,) [ xa(2) dp(2),

where the last step follows since x, may take only the values 1 or 0. Noting

. > (L 1
(F, Kz = Ko, )1(0) < <F‘K:v — Kzn|2, 1Kz — Ko, >La<g)

il

and using Cauchy-Shwarz we further obtain

I = P)FliZ3 )

< [ S IP — Keo g n @le = Ko g 0)002)

< sup |K, — K, alk: </ Kw—Ka,nd) w(T)du(z
AS /gzn, (zeg' |) I ”Lﬁ(g) g| dp ) xn(2)dp(z)
= K,-K, / K, K, du) du Fli2

<

; 2
Z (sup ~/9le - Kmnldp,) ‘/Vn (21618 |K, — Ka:n|) d/‘(m) ||F||L’;!,(g)-

7 \ZEVn

In order to remove the dependence on n of the first product term in the sum we make the
following estimate:

sup (f |K, — Kxn|d,u) sup (/ |T. K — Tznlfldp>
2€Vy \JG z€Vp \JG
= sup (/ |T -1, K — K|d,u)
2€V, 9 "
= swp ( / ITK — Kld,u)
g

2€x7 1 Vn

sup (/ |T. K — K|) du,
2€V \JG

IA

since Vn, z;1V,, C V. Which leads us to

I(I - P)FllZ3) < L‘i‘é‘v’ ( /g le—KI) dﬂ] [supinj /V n(llfx—lfx,.l)du(w)] 112
= d3d?||fII.

Invoking Corollary 4.1.4 we are done. [
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Remark 4.1.6 As pointed out in [0S92] for the case of the discrete wavelet transform these
estimates are not particularly good.

Suppose H = PWq, which is a RKHS with reproducing kernel
Ky = 1pdanq
and reproducing formula

Vi€ PWa, f(z)=/{(f Tod2rq)-

Thus, PWgq is an example of a space which fits the hypotheses of all the above mentioned
theorems. We could, in fact, invoke Theorem 4.1.5 and get (lousy) estimates for the frame
bounds. Alternatively, though, we may use Corollary 4.1.4 directly along with a result of
Grochenig to conclude that the weighted set {w,, T¢,d2-0} is a frame for PWq with the following
estimates for the bounds.

From [Gr691] we have that with {t,} a sampling sequence such that 27Q < 1 and T’ = sup |tiy1—
t;| then

I - P|| < 2TQ on PWq

where P is the operator defined in 4.1.5 and the partition {V,,} is the set of intervals having
the midpoints (£;4+1 + t;)/2 as their end points and w,, as their length. Invoking Corollary 4.1.4
we obtain the result that the set

{wn Ttn d27rﬂ }

is a frame for PWq with frame bounds (1 — 27°Q)? and (1 + 27Q)?, or equivalently in the
frequency domain the set

{wn e—tn}

is a frame for L?[—, 9] with the same bounds (1 — 27Q2)? and (1 + 2TQ)2.

4.2 Examples

As has been seen, the discrete representation of signals as irregular samples of their group
representation transforms is a complete characterization provided certain countable sets of
functions constitute frames for large enough spaces. Owing to the generality of the underlying
square integrable group representations, the flexibility of this approach to signal representation
is tremendous. This is manifested in the large number of free parameters in the representation.
Each choice of group, group representation, analyzing function g, and discrete lattice leads to a
discrete representation. Roughly speaking there are as many different discrete representations
as there are groups, group representations, discrete lattices and functions g.

In this thesis we shall restrict ourselves to three classes of discrete representation. These
classes correspond to the specific group representation transforms of (i) bandlimiting, (ii) Gabor
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transform, and (iii) wavelet transform. Each of these classes is defined by specification of the
group and the group representation, i.e. the pair {G,II}. Thus, within each class there is still
considerable freedom, e.g. the choice of analyzing function g and the choice of discrete lattice
I'. For complete characterizations these choices can not, of course, be made arbitrarily. As
discussed in previous sections, the frame properties of collections

{H(x)g}xél"

are directly relevant. If this set were a frame then the group representation transform V,f of
a signal f evaluated at points on the lattice I' would be a complete characterization of f, viz.
Chapter 3.
The corresponding group/group representation pair for the three special cases are
(i) bandlimiting: {(R,4+), 7},

(i) Gabor transform: {Gx,e 7}, and
(iii) wavelet transform: {Ga,7:Ds},

where Gy and G4 are the Weyl-Heisenberg and affine groups respectively given in Examples
2.3.2 and 2.3.1. The common feature in each of these group representations is translation. In
each case the group representation can be factored as Il = U,7; where # and ¢t are appro-
priate real values. Because translation in time acts as modulation by a complex exponential
in frequency, the frame properties of sets of complex exponentials play a fundamental role in
discrete representations of these types. The following lemma describes how frames of complex
exponentials together with U, can be used to generate frames for large spaces.

Lemma 4.2.1 Let supp § = [a,b] where a < b are real numbers. Also let U, be a bounded
linear operator for each real value z. Let {t;, »} and {2, } be real sequences. Suppose that

{€—ty .} is a frame for v, & (U (PWo )™

with bounds A,, and B,,. If there are constants A and B such that for y € R

0<ALG(y) 2 Sl UemgV (V)P < B <00 ae.

then {TtmnUsmg} is a frame for V 2 Um Uz (PWap) with bounds A (inf,, 4,,) and
B (sup,, Bm).

Proof:
For f € V write

Z | (f’ Ttm,n Ul‘mg> |2

Z | <fa eatm,n(Uzmg)A> 2 (Parseval)
= Z | <f(Umeg)Aa e—tm,,,> I2
> Boullf (Uerg 112

IA
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The first inequality follows from the assumption that {e_., .} frames V,, and the fact that
f(Uzng) € Vi, for each m. The lower bound is analogous. ]

It is clear from this lemma that for {7, ,Us,,g} to be a tight frame then the function G
must be constant a.e. The following corollary addresses the tightness issue.

Corollary 4.2.2 With the assumptions of Lemma 4.2.1 {r,, ,Us,,g} is a tight frame for

v £ Unm Uz (PWap) if and only if G is constant a.e. and for all m the frame {e-tmn}

is tight with Ay, = By, = C.

In the cases of the Gabor and wavelet transform Lemma 4.2.1 may be used to show that
(under proper assumptions) irregular lattices exist which generate frames for L*(IR) and H}(R)
respectively. These results are stated in Theorems 4.2.9 and 4.2.10.

4.2.1 Paley-Wiener

Sampling in bandlimited spaces has been the subject of extensive study. Uniform or regular
sampling in bandlimited spaces has been studied by Whittaker [Whil5] in 1915, Kotel’nikov
[Kot33] in 1933, Shannon [Shad9] in 1949. The basic result of these studies is the widely known
classical sampling theorem.

Theorem 4.2.3 (Classical Sampling Theorem) Let @ > 0 and 22T < 1. Then any f €
PWg may be reconstructed from its uniform samples {f(nT)} as

f= TZ f(nT)Tan27rQa

where the sum converges in L? and dj.q is the Dirichlet kernel.

Thus, the classical sampling theorem answers the following question:

What conditions on the set {nT} allow the recovery of f from {{nT}, f(nT)}?

57



The condition that the Classical sampling theorem gives is that the sampling density 7~ must
be at least as large as twice the value of the cutoff frequency Q. i.e. T~! > 2Q. The quantity
2Q is called the Nyquist density.

Let us now relate the classical sampling theorem to the general RKHS approach taken in
the begining of this chapter. In the case of uniform sampling the pertinent group is (R, +) and
the sampling lattice is I'r = nT. In terms of the discrete representation and frame perspective
the pertinent collection of elements is

{TnT d21rﬂ} .

In the case 272 = 1 the set of functions {'z—lﬁTang.,rQ} is an orthonormal basis for PWq. The
discretization operator is

Lf = {(f, mrd2ra)}

with the adjoint
L*c¢ =" enTnrdzra-

Note that the classical sampling theorem could be arrived at by considering the frame properties
of the collection {r,rdarq}. In particular, if 27°Q = 1 this set is a tight exact frame for
PWgq with bounds A = B = 2, and correlation R = 2Q1I ([ is the identity). In this case
Rt = %I = T1. Thus, we conclude that for any f € PWq

f=L'RILf=TL'Lf =T f(nT)rard2ra.

4.2.1.1 Frames of Complex Exponentials

Consider now more general sampling sets which are not necessarily uniformly spaced. Ir-
regular sampling in band-limited spaces has been studied extensively by Paley-Wiener [PW34],
Levinson [Lev40], Beutler [Beu61],[Beu66], and Yao-Thomas [YT67]. And recently all of the
afore-mentioned theory has been extended and unified by Benedetto-Heller [BH90], [Hel91],
and Benedetto [Ben92| in the context of frames. In particular, much of the theory is developed
in terms of frames of complex exponentials. Feichtinger and Gréchenig [FG92] have used the
notion of weighted frames, cf. Section 4.1.2, (of complex exponentials) to achieve good conver-
gence rates for iterative reconstructions from irregular samples where gaps in the sampling set
are no larger than the Nyquist density.

Let us relate the situation to the general RKHS approach at the begining of the chapter.
Suppose that I' = {t,,} is an irregular set of points from the real line IR and f is a signal which
is bandlimited by Q > 0, i.e. f € PWq. For simplicity we shall again take ¢ = dorqg. With
these choices the fundamental question is the following:

What conditions on the set T = {t,} allow the recovery of f from {{t.}, f(t.)}?

In this case the discretization operator is

Lf = {{fsrtndara}} = {f(ta)}

with the adjoint
L*c=_ cnTe,darn.
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In answer to the fundamental question we may state that a sufficient condition on {t,} is that
the sequence

{Ttn d21rﬂ}

constitute a frame for PWq. This is because in this case the discretization L is a frame
representation making Proposition 3.4.2 applicable and in fact we may write for all f € PWq

f=L*R'LY.
The frame properties of the set {7 d2rq} are then of clear interest.
By Plancherel and Parseval it is clear from the deﬁnition of a frame, viz. 3.1.1, that a set
{¢n} is a frame for H if and only if {d)n} is a frame for H £ {f fe 'H} With this notation
PWq = L2 [—£,Q]. Because of the basic Fourier relation

(Ttd2ra)” = e—t, L[-0,)s

the frame properties of the the set {7, darq} in PWq are the same as the frame properties
of the set {e_tnl[_gyg]} in L2[-Q,Q]. Thus, the frame properties of such sets of complex
exponentials are of direct interest in sampling theory for bandlimited functions.

By definition, viz. Definition 3.1.1, a sequence constituting a frame for a Hilbert space must
reside in that space. Notationally we may abuse this requirement and write that {e_:,} is a
frame for L? [a, b] meaning that {e_tn l[a,b]} is a frame for L? [a,b]. Here a < b are real numbers.
It is easy to see that if {e_;, } is a frame for L?[a, b] then {e_;,} is a frame for L? [a + ¢,b + c] for
any real c¢. In the time domain this corresponds to the statement that {Ttne(a+b) /2%2x((b=a) /2]}

is a frame for PW, y if and only if {Ttnece(a+b) /2%27((b~a) /2]} is a frame for PW[, 14

Sets of complex exponentials {e_., } have been studied by Duffin and Schaeffer [DS52]. One
of their fundamental results is a sufficient condition on a sampling set I' = {¢,} to generate a
frame of complex exponentials for LZ[-Q,Q]. That is, a condition which insures that the set
{e—t,} forms a frame for L2[-Q,Q]. This condition is related to the notion of uniform density.

Recall that, in general, a set I' = {t,} has uniform density AT if the two following conditions
hold.

(i) T is uniformly discrete, i.e. thereis a d > 0 so that for all n # m, |t, — t,| > d, and
(ii) |tn — n(AT)7?| < L for some constant L < oo.

Since |nT —mT| = |n—m|T and |nT —n(1/T)~!| = 0 a uniform sampling set I'r w1th sampling
period T is a uniformly dense sampling set with density ATy = 1/T.

Theorem 4.2.4 (Duffin-Schaeffer, [DS52, Theorem I]) If I' = {¢,} is a uniformly dense
sequence with uniform density AT > 29 > 0 then {e_;,} is a frame for L% [-Q, Q).

The following corollary is true by the Fourier transform isomorphism relating L? [, (]

and PWj.

Corollary 4.2.5 If T' = {t,,} is a uniformly dense sequence with uniform density AT > 2Q > 0
then {7, d2,q} is a frame for PWy,.
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It is interesting to note that a sequence which is uniformly dense may have arbitrarily large,
though finite, gaps. The largest such gap is the parameter L in the definition of a uniformly
dense sequence. For a uniformly dense sequence large gaps, however, must be compensated for
by portions of high density elsewhere in the set. The uniform discreteness of such a sampling
set prevents it from having any finite cluster points. Thus there can be no interval in which the
density of sampling points is unbounded. Roughly speaking we can think of a uniformly dense
sequence of uniform density A as a tesslation of the uniform sampling {nA~1}. By tesslation
of the set {nA~1} we mean a second set {t,} in which each sampling point ¢, may be identified
with a point nA~?! through the relation |t, — nA~!| < L. Figure 4.1.2 illustrates a uniformly
dense sequence derived as a tesslation of uniform sequence of density 1 on a compact interval.

n-1) n (n+l) (n+2)
s {n}

Figure 4.2: A uniformly dense sequence generated as a tesslation of a uniform sequence on a
compact interval.

Jaffard [Jaf91] has characterized sampling sets I' = {¢,,} which generate frames of complex
exponentials {e_;, } for L?[~Q, Q] in terms of unions of uniformly discrete and uniformly dense
sampling sequences.

Although we have taken the analyzing function g to be g = dagq it should be evident that
other analyzing functions can be used. In this case we are interested in the frame properties of
the collection {7, ¢}. This still leads to consideration of the frame properties of the complex
exponentials since

(Tt.9)" = €-4,3.
For arbitrary functions ¢ there is no reason that we should expect that this collection will form a
frame for L2 [, Q]. In fact such a collection could only possibly form a frame for L%(supp 7).
This is because if f is a function such that the support of fis exclusive of the support of g, i.e.
supp f(\supp § =0, then ~ R
(Fre—tnd) = (FTret) = 0.

SAo that if the essential support of § does not cover [—f2, ] then there are non-zero functions
f € L?[-Q, Q] for which there is no A > 0 so that

ANFIP < S2I(Fre-iad) 1%

4.2.1.2 Exact frames for PWq
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Definition 4.2.6 (Kadec-Levinson sequence) A real sequence {¢,} is a Kadec-Levinson
sequence if for some §2 > 0 the condition

sup |t —i|<l(i)
Pl — 50l <~ 1 \20

is satisfied.

Paley and Wiener first dealt with the question of when a set of complex exponentials {e_;,}
forms a basis for the space L2[-Q, ). Levinson [Lev40] showed that the constant 1/4 is the
smallest such constant which insures the completeness of {e_q,} in L?2[-Q,]. Later Kadec
[Kad64] gave a direct proof that {e_;,} is an exact frame. These results are stated in Theorem
4.2.7 which appears in [Ben92, Theorem 34].

Theorem 4.2.7 Suppose the sampling set {t,} is a Kadec-Levinson sequence for a given {2 > 0.
Then {e-;,} is an exact frame for L2[-Q, Q]

A Kadec-Levinson sequence I' = {t,} for © > 0 is uniformly discrete with uniform density
AT = 2Q. Clearly, if the sequence were uniformly discrete the uniform density would be 2(2.
To see that a KL sequence is uniformly discrete assume without loss of generality that t,, > ¢,
and write

tm —tn > inf (tm —tn)
= il#bf tm — sgp tn

> (m- DA (n+ A= (m—n-2)A,

so that |t, —t,| > d = %A. Figure 4.1.2 depicts sequences which are of the Kadec-Levinson
type. Each element ¢, in the sequence is restricted to lie within a region of length 1/(4Q)
centered at nA. This region is indicated by parentheses in the figure.

tn-l tn tn+l t|1+2
el e, iy pusNing
oo = t—y—ttr—y—t—— = oo

m-1)A nA m+1)A (m+2)A

Figure 4.3: A Kadec-Levinson sequence {t,} for @ > 0 where A = 5.

4.2.2 Gabor

We have seen that the Gabor transform G, is a special case of the group representation
transform where the underlying group is the Weyl-Heisenberg group Gy = T X R x R and the
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underlying representation is IIg(2,t,v) = ze,7;. As previously noted the Gabor transform may
be written as

Ggf(t,')') = (f, HH(l,t"Y)g) = (f, e'yTtg) .
As a discrete representation of a signal f we shall consider an irregularly spaced sampling set

I' = (t.,7m) at which the Gabor transform will be evaluated. The discrete Gabor representation
of a signal f € L2(R) is then

A(f) = {(tna 7m), Ggf(tn,')’m)} ¢

Thus, for the Gabor transform the fundamental question is the following:
What are conditions on the sampling set T' = (t,, 7y ) such that an f € L2(R) may be
recovered from knowledge of A(f) = {(tnyTm), Ggf(tnyTm)}?

In keeping with our basic approach to discretization we are led to consider the frame prop-
erties of collections of the form

{e’Ym Ttng }
which are the same as the frame properties for the collection

{Ttn e’Ymg} ¢

This is because the modulation and translation operators commute under magnitude, i.e.
leaTs| = |mvea|- Appropriately, we call collections of this form Gabor systems and such col-
lections which are frames Gabor frames. If the discrete lattice {(t,,vm)} is regular, i.e. there
are real numbers a and b such that (¢,,7vm,) = (na, mb) then we refer to the collection

{Tna embg} .

as a regular Gabor system and if it is a frame a regular Gabor frame.

4.2.2.1 Regular Gabor Systems

There is a wealth of theory associated with the Gabor transform Gabor systems and their
frame properties in the regular case. In this section we review some of the regular Gabor theory
in as far as it is pertinent to our general irregular outlook.

For regular Gabor systems {Tp,emsg} there is a characterization their frame properties for
L?*(R) in terms of the product ab. Namely,

(i) if ab > 1 the regular Gabor system {T,.,€msg} is not a frame for L2(R) for any choice of

9,

(ii) if @b < 1 then there exist analyzing functions g which generate regular Gabor frames
{Tna€mbg} for L*(R), and

(iii) ab = 1if and only if {T,aemsg} is an exact regular Gabor frame for L2(R).

The Balian-Low theorem [Bal81], [Low85], [Dau90], viz. [BHW90] for a mathematically
sound proof, is an uncertainty principle for exact Gabor frames. It says that an exact Gabor
frame can not be generated from an analyzing function which is well localized in both time
and frequency. For a function ¢ € L2(IR) we can think of the quantity ||tg(t)|| as a measure
of its localization in time. Similarly, ||yg(7)|| can be thought of as a measure of its frequency
localization.
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Theorem 4.2.8 (Balian-Low) Let g € L%(R). If {rnaemsg} is an exact frame for L2(IR) then

Ntg@IHIvG(n)Il = oo.

4.2.2.2 Irregular Gabor Systems

For g compactly supported, the following theorem gives conditions on an irregular discrete
lattice in the Weyl-Heisenberg group to give rise to a Gabor frame in L?(R). It is a direct
consequence of Lemma 4.2.1. A theorem of this form which is due to Heller appears in [Hel91].
Theorem 4.2.9 With [a,b] C R a compact interval and g € PW], ) with supp § = [a,b] and
g € L>°(IR), suppose {t,} is a real sequence such that

{e_s,} is a frame for L?[a,b],
and {y,} is a real sequence for which there is a d such that
Vm, 0<d<Ymt1 = Tm <b—a.

Then {e,,, 7,9} is a frame for L?(IR).

Proof:
In Lemma 4.2.11et U = U, = e, and ¢, , = t, so that

G =) lewmg)1? =3 Imyngl™.
m m

The condition that Ypm41 —¥m < b—a for each m implies that each term in the sum has support
which overlaps with at least one other. Thus there is an A such that G > A > 0 a.e. on R.
On the other hand, the condition that {7,,} is uniformly discrete together with the facts that
g € PW, ) and § € L°(R) implies a B such that G < B < oo on R. By Lemma 4.2.1

{e')'m Ttng}

is a frame for |J,, ey, (PW[,4)) = L*(IR) since the supports of (e,,,g)" overlap and cover R.
n

We note that [Gro92] provides a similar theorem for irregular weighted Gabor systems, cf.
Section 4.1.2, in which conditions on a sampling set in Gy are asserted which insure that the
weighted system is a frame for LZ(IR). However, the conditions in [Gr692] are more restrictive
than those of Theorem 4.2.9.

4.2.3 Wavelet

We have seen that the wavelet transform W, is a special case of the group representation
transform where the underlying group is the affine group G4 = IR x R* and the underlying
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representation is Il 4(¢,s) = 7D,s. As previously noted the wavelet transform may be written
as

Wy f(t,s) = (f,1La(t, s)g) = (f, 7t Dsg) .

As a discrete representation of a signal f we shall consider an irregularly spaced sampling
set I' = (tmn,Sm) at which the wavelet transform will be evaluated. The discrete wavelet
representation of a signal f € L%(R) is then

A(f) = {mns $m ), Wo((tmms Sm )} -

Thus, for the wavelet transform the fundamental question is the following:
What are conditions on the sampling set T' = (tm n,Sm) such that an f € L>(IR) may be
recovered from knowledge of A(f) = {(tmn, Sm)s Wo((tmmsSm))}?

In keeping with our basic approach to discretization we are led to consider the frame prop-
erties of collections of the form

{Ttm,n'Dsmg} ‘

Collections of this form are called wavelet systems and such collections which are frames wavelet
frames. If the discrete lattice {((¢mn,Sm)} is regular, i.e. there are real numbers a and b such
that (tmn,Sm) = (@~™nb,a™) then we refer to the collection

{Ta—mana’"g} .

as a regular wavelet system and if it is a frame a regular wavelet frame.

4.2.3.1 Regular Wavelet Systems

Recently regular wavelet systems have received an enormous amount attention. In fact, there
are seminal developments of wavelet theory by Daubechies [Dau92], Mallat [Mal89c], [Mal89b],
[Mal89a], and Meyer [Mey90]. The material in [Dau92] serves as an excellent backdrop to the
recent developments in wavelet theory.

One particular area of interest is the existence and construction of orthonormal wavelet
bases. In this regard the development of multi-resolution [Mal89c] analysis (MRA) has been
a major advance. A further development [Dau88] has been the construction of orthonormal
wavelet bases with compact support. As a result very fast algorithms, e.g. the fast wavelet
transform, for the computation of the wavelet representation have been constructed.

Although such bases certainly lead to invertible discrete represenations with fast algorithms,
we shall not consider such special cases in too much detail. For one thing, orthonormal bases
preclude the benefits associated with redundant systems as discussed in Section 3.5.1. For
another thing, in many applications the condition that the wavelet system must be regular is
undesirable. For instance in pattern classification a desirable property of a representation of a
signal is that it be translation invariant. In other words, translated versions of signals should
yield translated versions of their discrete representations. This is clearly not satisfied for fixed
sampling geometries such as are associated with regular wavelet systems. Moreover, there are
still reasonably fast algorithms for the computation of the wavelet representation for irregular
systems.
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4.2.3.2 Irregular Wavelet Systems

In answer to the fundamental question, Theorem 4.2.10 gives conditions on a sampling set
in G4 to give rise to a wavelet frame for H% (IR). It is a direct consequence of Lemma 4.2.1.
Theorem 4.2.10 Let 0 < a < b be two strictly positive real numbers and let g € PW[, ) and
g € L*°(IR) with supp g = [a, b].

Suppose that {tmn»} C R and {s,,} C R* are two sequences such that

{e—tmn} is aframe for L?[sa, 3,,b]

and there is a d such that

¥m, 1<d< b
m . a
Then
{TtmnDs,g} is a frame for H3(R).
Proof:

In Lemma 4.2.11let U = U; = D, so that

G =3 |(Dong) 1> =D ID,15l*

Since the support of D 17 is I, 2 [$m@, $mb], the condition on {s,,} that s,41a < sub
insures that I,, and Im+T have some overlap and are not identical. Since ¢ € L*°(IR) we may
conclude that there are constants A and B so that 0 < A < G < B < 00. Clearly J I, = (0,00)
so that V' = U,, Ds,,(PWa5) = PW(o,,0) = H3(IR) since identically constant functions are not
in L2(R). Thus, by Lemma 4.2.1 {r,, , D, g} is a frame for H(R). |

Note that an identical theorem which concludes that {r;,, , D, g} is a frame for L2(R) can
be arrived at by requiring the analyzing function g in Theorem 4.2.10 to be even. Finally, we
note that as in the Gabor case [Gr692] provides a similar theorem for irregular weighted wavelet
systems, cf. Section 4.1.2,in which conditions on a sampling set in G4 are asserted which insure
that the weighted system is a frame for L2(R). However, the conditions in [Gro92] are more
restrictive than those of Theorem 4.2.10.
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Chapter 5

Local Frames

In previous chapters we have seen how it is possible to represent signals from an infinite
dimensional Hilbert space using frames generated from irregular samplings of certain reproduc-
ing kernel Hilbert spaces. Because these are frame representations it follows that every signal
in the Hilbert space can be reconstructed from its frame representation. With respect to the
situation in which it is of interest to reconstruct only a specific single function in the Hilbert
space, a full frame representation is much more than is needed. Moreover, even though frame
representations are discrete, storage and manipulation on a digital machine, require not only a
countable representation but also a finite representation. Both of these observations motivate
the notion of a local frame. The chapter concludes with a scheme for signal compression using
local frames.

5.1 Frame Localization

Suppose H is a Hilbert space of interest. On the one hand the global theory of frames, viz.
Chapter 3, allows the reconstruction of every signal f € H from its frame representation. On
the other hand the fundamental goal of discretization theory is to reconstruct only a particular
signal f, € H from its discrete representation. Although the global frame representation is a
viable discrete representation which meets the mandate of the discretization theory, its ability
to recover every signal is far more than is required. Since it is not necessary to reconstruct
every signal in the entire Hilbert space H it is natural to ask if there is some method in which
the global frame representation may be localized about a particular signal. These ideas lead
directly to the notion of a local frame.

The distinguishing feature of a local frame for H is that it is dependent on a particular
signal in ‘H. Thus, for every signal in H there is an associated local frame. In this section
we examine two methods for frame localization: one entailing the signal dependent choice of
frame elements, i.e. signal dependent sampling, and the other entailing the finite truncation
of frame representations. The first method of localization involves the construction of a global
frame which has elements which are signal dependent. With respect to the frame {II(z)g}
localizations of this form will come from sampling sets I'(f) which are signal dependent. The
second method of frame localization is via truncation of a global frame. Truncation has the
desirable property that it necessarily results in a finite discrete representation of a signal.
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Localization can be viewed in terms of a decomposition of the Hilbert space H into two
signal dependent subspaces. If f, € H is the particular signal of interest, localization results in
a decomposition of H as

H =H(f.) ® H(f)t

where f, is (almost) contained in the finite dimensional subspace H( f).

In the following sections it is assumed that H is a Hilbert space contained in L%(R) and
G is a group with representation II on H. Further g is assumed to be an admissible function,
i.e. g € An.(H) where p is the left Haar measure. Recall that the generic representation of a

signal f € H is
{(f, H(l‘)g>}$er

where I' C G is a countable sampling set from G. This representation may be thought of as the
irregular sampling of the group representation transform V; : H + Lz(g) given in Equation
(2.4.1).

5.1.1 Signal Dependent Sampling

In previous discussions we have not addressed the issue of how the sampling set I' arises.
From a conventional point of view I' would be considered to be fixed and given. Here, instead
we view the sampling set I' as a design parameter for signal representation. In particular, we
may adapt the sampling set to fit particular signals of interest. As a result, we deal with signal
dependent sampling sets I'( f) and study the frame properties of sequences

{H($)g}zer(f)

for particular signals f € H. In general we look for signal dependent samplings I'(f) C T which
are embedded in global samplings I" which generate frames for the whole space H. This is one
method by which we may achieve frame localization.

As an example of a frame generated by a signal dependent sampling let’s look at the familiar
case of sampling in the bandlimited space H = PWq. In this case, viz. Section 4.2, with
g = darxq the sampling set I' = {t,} is a sequence of real numbers and the representation of
f € PWq is {f(t.)}. Suppose that f, € PWgy is the particular non-zero signal of interest.
Define the k-th moment sampling set T¥)(£,) of f, as

r®(s,) £ {t: (1) = 0}’

where ffk) is the k-th derivative of f,.. Being in PWq, f. is analytic and the moment sampling
sets {I‘(k)( f*)} are all well defined and countable. A nice feature of the moment sampling sets
is that they are translation invariant, i.e. with a € R

vk, TW(r,f) = rT®(f.).

According to the Duffin-Schaeffer theorem (Theorem 4.2.4) for {e_¢},cr to form a frame for
PWq it is needed that T' have uniform density (Section 2.5.2) AT' > 2Q. We state without
proof that such a sampling set may be generated as a finite union of moment sampling sets.
That is, we construct a signal dependent sampling set T'( f,) as

I'(fi) = U F(k)(f*),

keF
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where F C Z is a finite set. The reader is referred to Section 6.2.1 for a numerical example of
such a sampling scheme and its associated reconstructions.

5.1.2 Truncation

So far, our approach to discretization has resulted in representations of signals which are
countable yet possibly infinite. For practical reasons it is also necessary to have representations
which are finite. A natural procedure for going from a countably infinite representation to a
finite representation is truncation. Such a truncation is necessarily signal dependent since it is
the infinite representation of the signal on which the truncation is performed. In this section
we shall assume that {II(z)g},cr is a frame for H with frame representation L. If T' = {z,}
then L is given as

Lf ={Vsf(zn)}
with the adjoint
L*c= Z cnIl(zy)g.
Define A
Hs(fe) = span{ll(zn)g : |(f,1(zn)g)| > 6} (5.1.1)

We think of the space Hs(f«) as the localized space around the signal f,. with respect to the
frame {II(zy)g}. To further develop this idea we introduce the notion of a frame truncation
operator.

Example 5.1.1 Let J C Z. For localization around a specific f, the set J will depend on f,.
A simple frame truncation operator, F : £2(Z) — ¢2(J) is

0, otherwise

(Fe)n = { Cry MEJ (5.1.2)

where ¢ € ¢2(Z). This F has the following properties:
a. F'is a linear operator,
b I =1,
c. F = F*is self adjoint,
d. F=F? and

e. F is the orthogonal projection operator onto the subspace £2(J).

Proof:

a. With z,y elements of H and a, 3 complex scalars, clearly, F(az + By) = aFz + BFy.

b. (i) [IFl| > 1
Pick a j* € J and let ¢ = (§; ;+). Then we have

1= sup [P > [IPel] = 1 (5.1.3)
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(ii) [F] < 1

1Fell® = leil® < 3 leil® = el

jEJ

(Fe,e) = Y (Fe)jgi = leil?

JjeJ

(c;Fe) = Y cj(Fe);=Y_ el

jeJ
d. Trivially, F?z = F(Fz) = Fx.

e. By Fact 2.1.2 items a. through d. imply e.

Example 5.1.2 As a more specific example of a frame truncation operator consider the fol-
lowing F defined with respect to a specific f, € H and § > 0. A family of truncations {F%, s}
is given as

(Ff*,ﬁc)n — { 87:7 l(c*)n| 2 é (514)

otherwise,

where ¢, = Lf,.

For all ¢ € L(H) and § > 0, the truncation Fy, s provides an orthogonal decomposition of ¢
as

c=Fy, sc+ (I - Fy, 5)c
and
lleli? = | Fy. sell® + I(I = Fy. 5)ell?.

Such an F}, s partitions ¢ into two segments: one for which ¢, has elements larger than § and
one for which ¢, has elements less than or equal to §. The two following lemmas show that
(i) the former segment resides in a finite dimensional space and (ii) it is always possible to
determine a § which will ensure that an arbitrary percentage of the energy from the whole
sequence ¢, will be contained in this first finite dimensional segment.

Lemma 5.1.3 Suppose F¥, s is as in Example 5.1.2 for a fixed f. € H. For all § > 0

dim {Fy, s L(H)} < oo.

Proof:
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We have

llesll? 2 | Fy. sexl

> el

l(ca)n|26
> §%card {n :|(cs)n| > 6}
= 6 dim{Fy, sL(H)},
so that .
dim {Fy, 51 ()} < Il
ftvs )} —_ 6‘2 < 0o
since ¢, € ¢2(Z) and 6§ > 0. |

Lemma 5.1.4 Suppose F}, 5 is as in Example 5.1.2. Given € > 0 there is a 6 so that

(I = Fr.s)exll? < ellexl|?. (5.1.5)

Proof:
Clearly,

lim || Fy, seul|? = [[exl| < co.
§—0

Therefore, for € arbitrary there is some § > 0 so that
llex® = 1 Fp. sexll?] < ellexf®.

Since [[ea[2 = || Fyu sexll? + I(Z = Fy. )ec||? we may conclude [[( = Fy, e[ < elleaf?.  m

Equation (5.1.5) expresses the notion that the operator F, sL extracts the most significant
frame coefficients with respect to the specific signal f.. Here the term “most significant” is
quantified by the parameter € € (0,1). For example, a value of ¢ ~ 0 indicates that almost
every coefficient is significant, and a value of ¢ ~ 1 indicates that almost every coeflicient is
insignificant. Via this lemma there is an interplay between the specified value of € and 4. In
fact, Lemma 5.1.4 implies the existence of a truncation distribution function v(e) which serves
as the boundary between acceptable and non-acceptable thresholds § for a given ¢. Given a
particular f, € H define the truncation distribution function vy, : (0,1) +— [0, ||cs]|co) associated
with the frame representation L as '

v =it {8 : (7= Fp el < elleal?} (5.1.6)

where ¢, = Lf,. A possible truncation distribution function is shown in Figure 5.1. Proposition
5.1.5 asserts that a truncation distribution function must be monotonically increasing.
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Proposition 5.1.5 Given a signal f, € H, a truncation distribution function v, as defined in
(5.1.6) is a monotonically increasing function which is continuous from the left and

limvs(e) = 0
limvs(e) = |lefleo-

Proof:
We show v is monotonically increasing. Let €; < €3 and define the sets S; and S,

A -
Si & {6 U= Frpel? <allell?}, i=1,2

Clearly §; C §; so that inf §; < inf S; and consequently vy, (61) < vy, (€2). -
o
lc )| ®f---—mmmmmm oo —
V(E)
boundary
1 €

Figure 5.1: A possible truncation distribution function »(¢)

The truncation distribution describes the relation between the necessary value for the trun-
cation threshold § and the desired percentage of energy preservation € required after truncation.
Typically, a value of € is prescribed from which a compatible threshold § is computed via the
truncation distribution v, i.e. § = v(¢). Suppose f, is a particular signal in H, L is the pertinent
frame representation and € is chosen as a fixed value between 0 and 1. With such a prescribed
€, if 6 = v(e) it is assured that

(I = Fr, 6) LA < ellLf]l-

To see the ramifications of this requirement in the signal domain H let us first introduce the
concept of “essential containment”.

Definition 5.1.8 A signal f € H is e-contained in a subspace H' C H if
I(Z = Pr) fI1* < €l £11%,

where Py denoted the orthogonal projection operator onto the subspace H’, and we may write
fEH' by e.
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By the previous discussion if § = v(€) we may say that Fy, 5L f. is e-contained in Fy, sL(H).
Moreover, the essential containment property can be related back to the signal domain by
Theorem 5.2.1.

5.2 Finite Representation

In this section we examine localized frames resulting from truncation of a global frame for
a Hilbert space H. The truncation process results in a finite dimensional subspace of H which
itself is framed by finitely many elements taken from the global frame. Being a frame for
the localized space, the finite dimensional frame has an associated local frame representation.
Reconstruction from local frame representations are examined and bounds for the corresponding
error are developed.

5.2.1 Local Frame Representation

Assume that {¢,} is a global frame for a Hilbert space H C L?(IR) with frame representation
L and frame correlation R. In relation to previous material we may have ¢, = II(z,)g, but this
is not necessary for the discussion here. Fix § > 0 and consider a particular element f, € H
and the localization associated with the truncation operator Fy, s given in Example 5.1.2. From
Lemma 5.1.3 we see that localization by truncation has the property that the truncated space
Hs( fi) is finite dimensional. Here

Hs(f.) = span{dn : |{frrdn)| > 6}
= span{¢n : n € J5(f)}
= Ff-.-,SL(H),

where J5(fi) = {n : |{fs,¢n)| > 6} and cardJs(fi) < 0.
Because any finite collection of functions is a frame for its span [Pat92] we conclude that

{bn}ness(ss)

is a frame for Hs(f.). Moreover the associated frame representation operator with respect to
the truncated frame is Ly, 5 = Fy, sL with local frame correlation Ry, s = Fy, sRF}y, 5. A local
reconstruction fs starting from an arbitrary f € H is

fs = LjsRY sLssf
= (Fy,sL)"(Fy,sRFy, 5) Fy, 5L f
= L"F} sR'F} ;Lf
= L*Fy,sR'Fy, sLf

because FY, s is an orthogonal projection, viz. Example 5.1.1. Thus, a local reconstruction
may be thought of in terms of the truncation of the correlation matrix Ry, 5. The L% -error
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associated with the local reconstruction is

£ = Sl

i

|IL*RYLf. — L*RYFy, sLf.||
|IL*RY(I = Fy, s)L .||
L*[| /| RY||(I = FY. )L Al

B3
—A—”(I— Fy, s)Lfill.

IA

IA

Thus, if Fy, sLf. is e-contained in Fy, sL(H) then fs is S e-contained in Hs(f.) where Hs(f,) -
is given in (5.1.1). In fact, Theorem 5.2.1 improves on this result with a tighter bound on the
essential inclusion of % instead of fg.

Theorem 5.2.1 provides controllable error bounds on the local frame representation of a
signal. More than this, it provides a precise statement of the notion that a signal can be well
represented by the most important (e.g. largest) coefficients in its frame expansion and implies
a natural decomposition of the space H as Hs(fi) & Hs( fot.

Theorem 5.2.1 Given a signal f, € H , suppose {¢,} is a frame for H with operator 9,
representation operator L, frame correlation R, and frame bounds A and B. Given € > 0, if
0 = v(¢) then

- 2 B
I Sl _ B,
I £ll A
where A
fs = L*(Fy,sR'Fy, 5)Lf. = STL*Fy, 5L f..
Proof:

First, we establish the formal identity S~1L*Fy, sLf, = L*(Fy, sRTFy, 5)L f.. We have

S~V (Ft,sL)*(Fp,6L) f

= Y M= AL*LY(Fy, sL)*(Fy, 5L) fu

= > (FpsLy"(I = ALL*Y (Fy, sL) f.

= (FsL)RY(Fp5L)fe = L*(Fy, s R'Fy, 5)L ..

S71L*Fy, sLf,

Now, write
fo=fs=81Sf~8S'L*F;, sLf. = ST'L*(I — Fy, 5)L fu. (5.2.1)
Because § is a frame operator we have that
VgeH, Allgll® < (Sg,9) < Bllgll* (5-2.2)

In particular

Alfs= Sl < (LI = Fp)Lfu, STL(T = Fy. 5)L 1)
= {(I = Fp.s)Lfu, LS 5T = Fy 5)Lf.)
< T - F o) LENILS T L (I = Fy, 5) L1l
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< WLSTLANIIA - Fro ) LAA®
< I = Fr o)LL

< € LA

< eB|IAIP,

from which the result follows. The manipulations are justified respectively as frame definition,
adjoint operator property, Cauchy-Schwarz (and the fact that (f.,Sf.) is real and positive,
i.e. S is a positive real operator), operator norm inequality, |[LS~1L*|| < 1 (by Fact 2.1.2
LS—1L* is the orthogonal projection onto the range of L), application of Lemma 5.1.4, and
finally ||L]|? < B. |

Theorem 5.2.1 shows that with

MHs(fo) = span{dn : |{furdn)|> 8} = Fy, sL(H)

we have

fL€Hs(f.) by €2,

where § = v(¢). We have decomposed the space H as
H=Hs(f) & Hs(fu)"
where f,EHs(f.) and fo L Hs(f.)L.

5.2.2 Local Frame Correlation

In Section 3.3 we examined the properties of a general infinite dimensional frame correlation
" R. There we saw in Proposition 3.3.3a. that an infinite dimensional frame correlation R
is not compact. Local frame correlations, however, are finite dimensional and therefore are
compact. This implies the existence of eigenvalues and allows the incorporation of standard
matrix techniques such as singular value decompositions to expose the eigen-structure of a local
frame correlation matrix. From Proposition 3.3.2 local frame correlations Ry, s = Fy, sRFy,
are matrices given explicitly as

Rf,,a = (¢m,n)m,nEJ5(f*)

where A
Js(fe) = {n : |{fu,dn)| > 6}.

The following theorem relates the frame bounds of a local frame to the eigenvalues of
the local frame correlation matrix. In particular it shows that the maximum and minimum
eigenvalues associated with eigenvectors in the range L(H) are the values of the frame bounds.
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Theorem 5.2.2 Let {#,},; be a local frame for the finite dimensional Hilbert Space H =
Hs( f«) with local best frame bounds A and B and frame correlation Ry, 5. Then the frame
correlation R = Ry, 5 is related to the local frame bounds A and B as

A = minor(R)

B = maxor(R),
where o7,(-) denotes the spectrum restricted to the range L(H).

Proof:

This may be proven as a corollary to Theorem 3.3.6; however, we give the following direct
proof. We shall show that B = maxor(R). The proof of the lower limit A = min oz (R) is
analogous.

(i) maxor(R) < B
Since {¢n} is a frame for H then L* is surjective. Hence, for all f € H there is a c € £ (Z)
so that f = L*c and by the frame property

Vee L(H) A||L*¢® < (L*¢,SL*c) < B||L*c||2,
where S = L*L is the frame operator. This is equivalent to
Vee L(H) A(c,LL*c) < (L*¢,L*LL*c) < B{c,LL*c),

and so
{c, R%c)
< <
Vee L(H) A< e oy = B

Letting A be and eigenvalue of R in L(H), i.e. for some ¢ € L(H), Rc = Ac, we have

A2Je]l?

AL - =)< B.
Allel?

Therefore, in particular, maxor(R) < B.

(ii) maxor(R) > B

Now let ¢; be the eigenvector associated with the eigenvalue A; of R. Since span {¢;} = L(H)
then any ¢ € L(H) may be written as ¢ = ) a;¢; for some complex sequence {a;}. For all
ce L(H),

<c,R2c> = <Za,~ci,RZZaJ~c1~>
= ZZ<C,‘,R2C]'>

ZZA? (ciycj)

(maxAj) D03 X (eis e5)

< maxor(R)(c, Re),

IA

2
so that B & sup, %%2 < maxor(R). [ ]

75



5.3 Compression

Compression of data is a natural goal in applications which seek to minimize the storage
or medium capacity needed to hold the information contained in a signal. In this section we
describe a general method for data compression using local frames. The method is constructed
so that a local representation of an arbitrary signal satisfies a prescribed information constraint.
The information constraint is assumed to be a fixed bit rate b, (bits per second). Accordingly,
compression comes from the quantization of local frame representations in such a way as to
meet the information constraint. This compression method results in a coding scheme which
is hierarchical in the sense that the code generated by the compression method with a low
bit rate constraint is embedded in a code generated at higher bit rate constraint. Numerical
reconstructions and performance evaluation of the compression method are detailed in Section

6.3.2.

5.3.1 Compression Ratios

When dealing with data and schemes for data compression it is natural to introduce a
measure of compression. In simple terms, a “compression ratio” measures the relative decrease
in complexity of data in a raw form as compared to the complexity of its new compressed form.

For speech it is customary to deal directly with bit rates instead of compression ratios. This
is because the bandwidth of speech is a fixed constant which, for some practical purposes, may be
taken to be Q = 4000 Hz. Consider the “raw” form of an analog speech signal f, to be a sampled
version with 8 bits per sample and a uniform sampling period of T = 1/(22) = 1/8000 seconds.
In this case the required “raw” bit rate is 64Kbps. Since the hypotheses of the classical sampling
theorem are satisfied, it is possible to reconstruct (modulo slight errors due to quantization) the
original speech signal f.. Any representation which allows for recovery of the original speech
signal f, and requires a bit rate less than 64Kbps is a compressed version of f,. Consequently,
a compression ratio of 10:1 will be achieved by a particular speech compression scheme if that
scheme yields a bit rate of 6.4Kbps.

It is clear that a similar calculation can be made for signals from an arbitrary bandlimited
space (with a bandlimit other than 4KHz). Since in practice we may consider all signals of
interest to be bandlimited, we deal directly with bit rates instead of compression ratios.

5.3.2 Approach

Let us now return to the generic representations in the RKHS V,(H), viz. Section 4.1.

Thus, we specialize to elements ¢, = II(z,)g. With Hy 2 span {Il(z)g}, g, let f. € Hy be
a signal on the interval I of duration || and let L be the frame representation operator for the
frame {II(x,)g} so that

Lfe = {{fo,I(z5)g)}

is the set of frame coefficients.

It is the frame coefficients which must be transmitted or stored. For representation in digital
form, it is necessary that the frame coefficients be quantized. For simplicity, the quantization
strategy which we employ is one which maps values uniformly along some interval. This uniform
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mapping corresponds to specifying each coefficient with a fixed number of bits. The fixed
number of bits which we allocate for the representation of each coefficient is denoted by b,

be . .
(bits/coef). Let the quantization level set {l;}3, be a sequence of increasing real numbers.
be
The quantization function Qj, is defined in terms of the level set {I1}, as

ll, r < ll,

ch(m) = lk, TE [lkvlk-l—l)? (531)
l2bc7 T ..>. 12567

For the values (m, M) = (1,2) and b, = 1,2,3 the uniform quantization function is plotted in
Figure 5.2. For quantization of the frame coefficients the dynamic range of interest is (m, M)
and where :

M= “Lf*”oo = S:P {I (f*, ¢n) I} (5'3'2)

and m may be chosen in a number of ways, e.g., viz. Section 6.3.2. A uniform quantization is
be
performed by the function @, if the level set {/z}, has elements

2k -1

We shall specify the inherent constraint on the amount of information which we can transmit
per unit time as a maximum allowable bit rate of b, bps (bits per second). For convenience, we
do not fix this quantity explicitly. Instead, we specify a corresponding coefficient rate ¢,, and
vary the bit allocation b, to meet the information rate constraint b,, through the simple relation
b, = ¢;b.. With the coefficient rate fixed and specified, the maximum number of coefficients n,
that we are able to transmit for the function f. of duration |I| is

ne = ¢ ||

Thus, given the acoustic signal f. of duration |I| and a fixed coefficient rate, the maximum
number of coefficients with which f, may be represented, while still satisfying the information
rate constraint, is given by n.. With respect to the frame coefficients, this maximum number
of coefficients n. can further be related to a value for a threshold §. To see this, we introduce
the coefficient distribution function,

A(8) £ dim Fy, sL(H) = card {(fs, Ymn) > 8}, (5.3.3)

for 6 € [-M,M]. The coefficient distribution function A : [-M, M] — N is monotonically
decreasing and continuous from the left. We may associate with A an ‘inverse’ A~! defined as

A7Y(n) =inf {z € [-M, M] : Az) < n},
where n € IN. If a threshold value § is chosen as
§= /\"l(nc),
then the thresholded frame representation Fy, sL(f.) will have a cardinality

dim thA—l(nc)L(H) < 7ne.
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Figure 5.2: Uniform quantization with (m, M) = (1,2) for b, = 1,2, 3.

Consequently, the total bit requirement for representing the acoustic signal f, of duration |I]
in b, bits/coefficient is no greater than n.b. bits. This, in turn, guarantees that the local frame
encoding of the signal f, is compatible with the bit rate constraint, i.e.,

b, dim Ff”)‘—l(nc)L(H) < b |I|.

A numerical experiment based on this scheme for data compression is detailed in Section
6.3.2. There the method is applied to real speech signals as well as synthesized data.
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Chapter 6

Applications and Results

In this chapter we numerically validate and demonstrate the utility of the discrete repre-
sentation theory developed in this thesis. For several test signals discrete representations are
computed and displayed for the cases of Paley-Wiener and wavelet representations. Further,
for the cases of the Paley-Wiener and wavelet representations the test signals are reconstructed
from a variety of discrete representations. Finally, numerical experiments investigating the noise
suppression and compression abilities of discrete positive extrema (PE) wavelet representations
are presented.

6.1 Test Signals

To illustrate various discretizations and signal processing tasks, we have chosen a set of four
basic test signals. Three of these four signals are synthetic and designed to have interesting
time-frequency behavior. The third signal is a real speech signal taken from the TIMIT !
speech corpus. These four signals are respectively labeled “chirp”, “packet”, “harmonic” and
“water”. Throughout this section the function A is a smooth positive window function of
compact support which is realized as one half period of a sine wave centered about the origin,

ie.
a [ sin(F(t+1L/2), te(-L/2,L/2)

An(t) = { 0, otherwise, (6.1.1)
where L is the length of the interval of support of A;. For convenience we define a second
window function A}/‘ which is a shifted version of Ay having support starting at zero as

A
A}: = TL/2 AL.

We now describe the test signals.

Sine Packet
Shown in Figure 6.1, is a synthetic signal which is a time progression of three windowed
sine waves. We shall refer to this signal as “packet”. Each successive windowed sine has a

1The TIMIT speech corpus is a data base consisting of phonemically balanced sentences spoken by people of
different dialects throughout the United States.
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Figure 6.1: The signal “packet” and its magnitude Fourier transform.

higher frequency than then its predecessor. The windows are non-overlapping and compactly
supported with an interval of support equal to 5 periods of the corresponding sine wave. The
sine packet sequence is given by

N

Z As /o, (t — i) sin(2mwyt),

k=1
where N = 3, Ay, is the window function of (6.1.1) with L = 5/wy and (wi,ws,ws) =
(100,400, 900) Hz.

Chirp
In general, a chirp signal may be given by

AL(t) sin(at®),

where @ > 0 and o > 1 are constants and Ay is the window function with support on an
interval of length L. Intuitively, the “instantaneous” frequency of a chirp signal as a function
of time is increasing. The specific chirp signal which we use and refer to as “chirp” has the
values @ = 0.03, @ = 1.8. The signal “chirp” is plotted in Figure 6.2.

Harmonic
Figure 6.3 displays the second synthetic signal which we shall refer to as “harmonic”. It
consists of a windowed portion of the superposition of three sine waves with harmonically related
frequencies. The harmonic signal is given by

N
A(t) Z ay sin(27kwot)

k=1

where N = 4, A is the window function, ax = 1, for ¥ = 1,2,4, ag = 0 and wy = 100 Hz.
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Figure 6.2: Chirp signal and its magnitude Fourier transform.

Female spoken “water”
The third signal is a real speech signal as spoken by a female speaker from the TIMIT data

base. The word “water” is taken from the TIMIT sentence 2 “She had your dark suit in greasy
wash water all year”. This signal is depicted in Figure 6.4.

2The exact reference to the TIMIT data base is sentence “sal”, speaker “fdaw0”.
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Figure 6.3: The signal “harmonic” and its magnitude Fourier transform.

81



o
lllllllllllllllllll
IIIIlIIIIIIIII;r

—
o
llllllllllllllll

|water.ft|

Figure 6.4: Female spoken “water” and its magnitude Fourier Transform.

6.2 Numerical Reconstruction

The main question put to test the validity of any discrete representation is whether it
contains enough information about the underlying signal to be able to recover it. One goal of
this section is to numerically illustrate the theory of discrete (local) representations developed
in this thesis on real signals. In particular, we shall provide numerous examples of discrete
representations and their corresponding reconstructions.

We first examine discrete representations in the Paley Wiener spaces. Here, we provide
examples of discrete representations of bandlimited signals directly by its samples. Second, we
provide discrete wavelet representations of the test signals and illustrate by example how such
time-frequency discrete representations are useful in speech processing for noise suppression
and compression.

6.2.1 Sampling in Paley-Wiener Spaces

The most natural discrete representation of a signal is through its direct sampling. For
bandlimited signals there are direct sampling discrete representations which admit full recon-
struction of the original signal, viz. Section 4.2.1. In this section we provide some examples
of discrete representations in bandlimited spaces and numerically illustrate the iterative recon-
struction process, viz. Algorithms 3.4.3 and 3.5.3.

Let © > 0 be the finite constant bandlimit. The representation of a signal f € PWg is

Lf= {f(tn)} ’ (6'2'1)

where {t,} € R is the sampling set and L is the representation operator, cf. Section 4.1
and Table 4.2. For the Paley-Wiener space PW( we examine four different types of sampling:
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uniform, Kadec-Levinson, jitter, and extrema. Each type of sampling is fully explained in
the sections below. Except for the last type of sampling, all of these strategies are signal
independent, i.e. global.

6.2.1.1 Uniform Sampling

Uniformly sampled representations of bandlimited signals is the most commonly employed
representation for signal processing. The uniformly sampled representation of a signal f € PWg
is given by (6.2.1) where the sampling set T is

I'=Tr = {nT}

and where T is the sampling period. For perfect reconstruction of every signal in PWgq from its
uniform samples on I'r the classical sampling Theorem 4.2.3 gives the necessary and sufficient
condition that 272 < 1.

Figures 6.5 through 6.8 illustrate the iterative reconstruction of the signals in the test set
from their respective uniform samples. Each figure indicates the value of {2 used to determine
the sampling period T'. In each case the sampling period is taken to be T' = 1/212.
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Figure 6.5: Reconstruction of “packet” from its uniform samples.

The above figure shows the uniform representation of the signal “packet” and its iterative
reconstruction using Algorithm 3.4.3. The LZ-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its uniform samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.6: Reconstruction of “chirp” from its uniform samples.

The above figure shows the uniform representation of the signal “chirp” and its iterative
reconstruction using Algorithm 3.4.3. The LZ-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its uniform samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.7: Reconstruction of “harmonic” from its uniform samples.

The above figure shows the uniform representation of the signal “harmonic” and its iterative
reconstruction using Algorithm 3.4.3. The L2-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its uniform samples and the iterative reconstruction is shown in the very bottom graph.

86



60 LELEBLA I LI I ] LA BILIR ] ' LI 4 LR l LI LI UL l LI | L:
- A= 0.100 ] 3 E
Y 4= 4.003 ] 2 E
N Omega = 2.000 KHz 2 F 3
20 | J 1E E
2 _ 0F W\/\/\/\N\/V\AAAAAA—;
O _i I . ‘ 1L Ul L1 11 Lt —1 : N} l | I ] I 1 1 1 1 l 11 E
0 1 2 3 4 -5 0 5
% error vs. iteration g (ms)
1 -_ I 1 | i T I L 4 1 T I 1 1 ) T ﬁ |_:
0.5 F . k =
C 1K1 ok L FEEEY ‘ \ 101 L] ! ! 3
- JARNRTRRE SR ARREE BRI |' z A%, x|| ]
0 E- : Vi “'}H'T‘\"! TI.."l]l'y i ||] ! } ” 1 i i 'l , i I “[‘ ?'!1[ "‘ rl' u lll .l;! .
-05F 3
: ' 1 J 1 1 l 1 L 1 ] l 1 1 1 ] i 1 :
0 100 200 300
water, Original and its samples (ms)
1 = T T T T T T T T T T T T T T T =]
05F -
: A LhuR LR AL .
o Wi | HRLE RARRAR AL ‘\“i‘ . =
-05F 3
S T ST R S U S S
0 100 200 300

Iterations 0 and 5 (ms)

Figure 6.8: Reconstruction of “water” from its uniform samples.

The above figure shows the uniform representation of the signal “water” and its iterative
reconstruction using Algorithm 3.4.3. The L2-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its uniform samples and the iterative reconstruction is shown in the very bottom graph.
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6.2.1.2 Kadec-Levinson Sampling

A Kadec-Levinson representation of a signal f € PWy is given by (6.2.1) where the sampling
set I' = {t,} satisfies
It i.l < l (i)
20 T 4\20

for all n. viz. Definition 4.2.6. By Theorem 4.2.7 a Kadec-Levinson sequence implies that
{e—t,} is an exact frame for PWg. Hence, we may reconstruct any signal f € PWg from its
Kadec-Levinson representation using either Algorithm 3.4.3 or 3.5.3.

Figures 6.9 through 6.12 illustrate the iterative reconstruction of the signals in the test
set from their respective Kadec-Levinson representations. Each figure indicates the value of Q
used to determine the Kadec-Levinson sampling. In each case the sample sequence is generated
randomly to conform to the Kadec-Levinson condition as

iy = (n + 0 1) 1
" "4/ 2Q
where {0, } is a sequence of independently identically distributed random variables with uniform
distribution on (-1,1).
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Figure 6.9: Reconstruction of “packet” from its Kadec-Levinson samples.

The above figure shows the Kadec-Levinson representation of the signal “packet” and its
iterative reconstruction using Algorithm 3.4.3. The LZ-error is plotted as a function of the
iteration number in the upper left graph which also contains the values of the simulation
parameters. To its right is the reconstructing dirichlet function. The middle graph shows the
original signal and its Kadec-Levinson samples and the iterative reconstruction is shown in the
very bottom graph.
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Figure 6.10: Reconstruction of “chirp” from its Kadec-Levinson samples.

The above figure shows the Kadec-Levinson representation of the signal “chirp” and its
iterative reconstruction using Algorithm 3.4.3. The L2-error is plotted as a function of the
iteration number in the upper left graph which also contains the values of the simulation
parameters. To its right is the reconstructing dirichlet function. The middle graph shows the
original signal and its Kadec-Levinson samples and the iterative reconstruction is shown in the
very bottom graph.
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Figure 6.11: Reconstruction of “harmonic” from its Kadec-Levinson samples.

The above figure shows the Kadec-Levinson representation of the signal “harmonic” and
its iterative reconstruction using Algorithm 3.4.3. The L2-error is plotted as a function of
the iteration number in the upper left graph which also contains the values of the simulation
parameters. To its right is the reconstructing dirichlet function. The middle graph shows the
original signal and its Kadec-Levinson samples and the iterative reconstruction is shown in the
very bottom graph.
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Figure 6.12: Reconstruction of “water” from its Kadec-Levinson samples.

The above figure shows the Kadec-Levinson representation of the signal “water” and its
iterative reconstruction using Algorithm 3.4.3. The L2-error is plotted as a function of the
iteration number in the upper left graph which also contains the values of the simulation
parameters. To its right is the reconstructing dirichlet function. The middle graph shows the
original signal and its Kadec-Levinson samples and the iterative reconstruction is shown in the
very bottom graph.
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6.2.1.3 Jitter Sampling

Jitter sampling sequences are similar to Kadec-Levinson sequences except that they allow
a larger constant than the constant 1/4 required in the Kadec-Levinson condition. However,
it is still necessary that the jittered sequence be a uniformly discrete sequence, viz. Section
2.5.2. From the point of view of frame reconstructions, the Duffin and Schaeffer Theorem 4.2.4
requires that the uniform density AT of the sampling sequence I' satisfy AT' > 2§. If this
condition is satisfied we may reconstruct any signal f € PWq from its jittered representation
using either Algorithm 3.4.3 or 3.5.3.

Figures 6.13 through 6.16 illustrate the iterative reconstruction of the signals in the test
set from their respective jittered representations. Each figure indicates the value of £ used
to determine the jittered sampling sequence. In each case the sample sequence is generated
randomly as

1
tn = (n+ 0':,-,,,3)'-2—5

where {0, } is a sequence of independently identically distributed random variables with uniform
distribution on (—1,1) and § = 0.4.
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Figure 6.13: Reconstruction of “packet” from its jittered samples.

The above figure shows the jittered representation of the signal “packet” and its iterative
reconstruction using Algorithm 3.4.3. The LZ%-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its jittered samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.14: Reconstruction of “chirp” from its jittered samples.

The above figure shows the jittered representation of the signal “chirp” and its iterative
reconstruction using Algorithm 3.4.3. The LZ-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its jittered samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.15: Reconstruction of “harmonic” from its jittered samples.

The above figure shows the jittered representation of the signal “harmonic” and its iterative
reconstruction using Algorithm 3.4.3. The L?-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its jittered samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.16: Reconstruction of “water” from its jittered samples.

The above figure shows the jittered representation of the signal “water” and its iterative
reconstruction using Algorithm 3.4.3. The L2-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its jittered samples and the iterative reconstruction is shown in the very bottom graph.
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6.2.1.4 Extrema Sampling

Using the theory of local frames developed in Chapter 5, we argue that there are classes
of signals for which their local extrema locations form local frames of complex exponentials
around each signal in the class.

To see this, consider the windowed sine function f.(t) = A(2) sin(27Qqt) of frequency Qo > 0.
Also consider the sampling set

I(f.) = TO) JTW(£)

where T'¥)(£,) = {t : f,fk)(t) = 0} is the kth moment sampling set, viz. Section 5.1.1. Here we
assume that A is a strictly positive window function which has compact support in frequency.

For this f, we can easily determine the sampling set I' to be I'(fi) = {4—%;} Thus, I'( f«)
is a uniform sampling set with density AT(f.) = 4Qp. With @ < 2Qq, it follows from the
Duffin-Schaeffer Theorem 4.2.4 that {e_;,} is a frame for L2 [, Q] or equivalently that the
set {T_s,darq} is a frame for PWg. Consequently any function in PWq may be reconstructed
from its sample values on I'(f,). In particular, if f, were in PWq for some Q < 2{Qq then it
could be reconstructed from its extrema and zero crossing sampling set I'( f,) as

fo= L*R'L{,
where R is the frame correlation and L is the frame representation

Vf€ PWa, Lf={f(Ohery.-

To complete the argument we need only note that for the particular signal f,
L*R'Lf. = L*R'L: f.

where L, is the representation associated with only the extrema set I‘(l)( fi), e Lif =
{f(®}era(y,)- This statement can most easily be verified through the observation that for a
general frame {¢, } for a Hilbert space H

VieMH, f=L"RLf=LyLf=) (fi¢n)¥n

where {1} is the dual frame with frame representation L. Thus, eliminating terms for which
(f, #n) = 0 has no effect on the reconstruction.

If the window function is such that f, € PWq for some < 2Q, then by the above
arguments we may conclude that {r:dara},cra(y,) is a local frame for PWq around f, and
moreover that f, can be reconstructed from only its extrema values.

Remark 6.2.1 Note that the same conclusion can be made if the sample set is taken as only
the maxima points and not all the extrema points. In the case of f.(t) = A(¢)sin(27Qot) the
set of maxima locations together with the set of zero crossing locations will have a density of
3.
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It is clear that we can not expect arbitrary bandlimited functions to have extrema sampling
sets which form local frames containing the signal itself. This is particularly true for signals with
complicated time-frequency behavior, e.g. the chirp or sine packet signal. On the other hand,
we can extend the previous argument fairly easily to apply to signals which are superpositions of
finitely many sinusoidal signals. See, for example, Figure 6.19 in which the signal “harmonic” is
perfectly reconstructed from its extreme points. The reason we expect to be able to reconstruct
a finite superposition of windowed sinusoidals is that the highest frequency in the superposition
will dominate the extrema set. Consequently the extrema plus zero set should have a density
large enough to form a frame of complex exponentials for a bandlimited space which contains the
original superposition. Based on experiments we conjecture that there are large classes of signals
(other than finite superpositions of sinusoids) which admit such local extrema representations.

Consider now the signal “packet” and its extrema reconstruction in Figure 6.17. It is evident
from the figure that the reconstruction failed to replicate the original signal; however, since the
“packet” signal is a time progression of individual sinusoidals we are able to replicate any
particular one by choosing the reconstruction filter g appropriately. In this figure g = dar(0.5)
to match the middle sinusoid. From the figure it is clear that the sampling for the lowest
frequency sinusoid is too sparse for reconstruction with g while the highest frequency sinusoid
has too high a bandlimit for reconstruction with g, i.e. it is not in PWg5). For the middle
sinusoid, though, we are able to reconstruct perfectly using the filter g. Similar remarks can be
made for the “chirp” signal in Figure 6.18.

This situation suggests the notion of incorporating different analyzing filters over different
frequency bands. For instance, for the signal “packet” we might incorporate three different
filters to reconcile each individual sine packet and subsequently reconcile (add) the three results
to obtain the entire original signal. This observation hints strongly at the wavelet transform
and in particular the discrete extrema or positive extrema or maxima wavelet representation for
signals with complex time-frequency behavior. Discrete wavelet representations are numerically
investigated in the next section. Numerical results for the discrete positive extrema wavelet
representation are presented in Section 6.2.2.3.

Figures 6.17 through 6.20 illustrate the iterative reconstruction of the signals in the test set
from their extrema representations.
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Figure 6.17: Reconstruction of “packet” from its extrema samples.

The above figure shows the extrema representation of the signal “packet” and its iterative
reconstruction using Algorithm 3.4.3. The L%-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its extrema samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.18: Reconstruction of “chirp” from its extrema samples.

The above figure shows the extrema representation of the signal “chirp” and its iterative
reconstruction using Algorithm 3.4.3. The L%-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its extrema samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.19: Reconstruction of “harmonic” from its extrema samples.

The above figure shows the extrema representation of the signal “harmonic” and its iterative
reconstruction using Algorithm 3.4.3. The LZ-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its extrema samples and the iterative reconstruction is shown in the very bottom graph.
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Figure 6.20: Reconstruction of “water” from its extrema samples.

The above figure shows the extrema representation of the signal “water” and its iterative
reconstruction using Algorithm 3.4.3. The L2-error is plotted as a function of the iteration
number in the upper left graph which also contains the values of the simulation parameters.
To its right is the reconstructing dirichlet function. The middle graph shows the original signal
and its extrema samples and the iterative reconstruction is shown in the very bottom graph.
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6.2.2 Discrete Wavelet Representation

In contrast to the orthogonal case, non-orthogonal wavelet frames with any specifiable shape
and support in frequency are easily generated. In this section we present discrete wavelet
representations of the signals in the test set and illustrate the frame reconstructions of Chapter
3.

Recall from Section 4.2.3 that the discrete wavelet representation of a signal f is Lf =
{{fsTtmnDsn9)} where T = {t,1 n,5m} C Ga and g is the analyzing function. Alternatively, we
may view this representation as the irregular sampling W f(t,; n, Sm ) of the continuous wavelet
transform W, f of f.

For demonstration purposes, we generate an analyzing function g which has good localization
in both time and frequency. More specifically, let g4, be the real and even ideal bandpass filter
specified as

Gideat = L—p,—a] + 1[a,8]
for 0 < @ < b < oo. This filter is clearly well localized in frequency, however its decay in time
follows 1/t. To achieve better decay in time we convolve in frequency the ideal bandpass filter
with a dirichlet kernel d,, where ¢ > 0 is small compared to b — a, i.e. ¢ < b — a. This yields
the trapezoidal analyzing function g,,,, given as

gtrap = 1[—0,0] * gideal'

The specific values we have used are a = 0.4, b = 0.5 and ¢ = 0.05 KHz. The two sampling
strategies which we examine are (i) regular with respect to the group structure of G4, and (ii)
signal dependent positive extrema (PE).
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W.(Ipacket)

Figure 6.21: The continuous wavelet transform of the signal “packet”

6.2.2.1 Continuous Wavelet Transform

We have seen that the discrete wavelet representation of a signal f comes from samples of
the continuous wavelet transform W, f(t, s), where ap > 1 is a representation parameter. For a
given sampling structure {s,, }zzl on the scale axis s where N is a finite integer, the wavelet
transform can be implemented as a bank of N linear filters. To see this note that

ng(t’ SM) = (f * Dsmg)(t),

so that the wavelet transform is the response of a bank of filters with impulse responses
{D,mg}ﬁ,‘f:l. For simplicity the simulations presented here have a sampling on the scale axis

s which is fixed according to {sm}Y_, = {ag"}ImVQ_N/z. As an example of a “continuous”
wavelet transform we display in Figure 6.21 the “continuous” wavelet transform of the test
signal “packet”. Actually what is displayed in this figure is the “continuous” output of the
wavelet filter bank {D_.,mﬁ}ﬁ=1 where N = 64. The figure displays the output of all 64 filters
starting with the the response of D, g in the bottom most signal up to the response of Dy, g
in the top most. In this figure ¢ = g4.., Where @ = 0.4 and b = 0.5 KHz. The input signal is
plotted at the very top of the figure for reference.

6.2.2.2 Regular Wavelet Representation

In this section we present a sequence of figures which display the discrete regular wavelet
representation of the test signals. This representation is derived from the regular samples of
the continuous wavelet transform. Signals are reconstructed from their regular wavelet repre-
sentation via Algorithm 3.4.3. The regular wavelet representation of a signal f which we have

used is
{W, f(a, a5™nT)}

where ap and T are chosen so that this set is a regular wavelet frame.
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Figures 6.22 through 6.33 illustrate the reconstruction of the test signals directly from their

regular wavelet representations.

Figures 6.34 through 6.45 illustrate the reconstruction of the test signals from their quan-
tized regular wavelet representations. Here, before reconstruction the sample coeflicients are
quantized according to b, = 2 bits/coefficient, i.e. cop = Q2(c) is the quantized data where @,
is the quantization function in (5.3.1) and the dynamic range (m, M) is signal dependent.
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Figure 6.22: Regular wavelet representation for “packet”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“packet”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = 3°N_, |D,,.§|? and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function Ay, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
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Figure 6.23: Reconstruction of “packet”.
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Figure 6.24: Cdf and minimax curves for “packet”.
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Figure 6.25: Regular wavelet representation for “chirp”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“chirp”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = Zﬁd |D,,. 4|2 and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.26: Reconstruction of “chirp”.

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.27: Cdf and minimax curves for “chirp”.
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Figure 6.28: Regular wavelet representation for “harmonic”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“harmonic”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = Y"N_ |D,, §|? and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.29: Reconstruction of “harmonic”.

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function Ap.imonic is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.30: Cdf and minimax curves for “harmonic”.
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Figure 6.31: Regular wavelet representation for “water”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“water”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = 2%—_—1 | Ds,. )% and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,,... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
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Figure 6.32: Reconstruction of “water”.

as a function of the channel number.
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Figure 6.33: Cdf and minimax curves for “water”.
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Figure 6.34: Regular wavelet representation for “packet”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“packet”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = Zgﬂ |D,,.G|* and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.35: Reconstruction of “packet”.

Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,,... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response

as a function of the channel number.
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Figure 6.36: Cdf and minimax curves for “packet”.
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Figure 6.37: Regular wavelet representation for “chirp”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“chirp”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G' = Zﬁﬂ | Ds,.G]% and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom

graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.38: Reconstruction of “chirp”.

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.39: Cdf and minimax curves for “chirp”.
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Figure 6.40: Regular wavelet representation for “harmonic”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“harmonic”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = Y"V_, |D,, 4|2 and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.41: Reconstruction of “harmonic”.

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,,;menic is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.42: Cdf and minimax curves for “harmonic”.
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Figure 6.43: Regular wavelet representation for “water”.

Shown above is the wavelet regular representation and its reconstruction for the signal
“water”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = Eﬁ=1 |D,,.§|? and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Above, the signal “water”’and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,,... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
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Figure 6.44: Reconstruction of “water”.

as a function of the channel number.
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Figure 6.45: Cdf and minimax curves for “water”.
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6.2.2.3 Positive Extrema Wavelet Representation

In this section we present a sequence of figures which display the discrete positive extrema
wavelet representation of the test signals. This representation is derived from the extrema
samples of the continuous wavelet transform which are positive. Signals are reconstructed
from their positive extrema (PE) wavelet representation via Algorithm 3.4.3. The PE wavelet

representation of a signal f which we have used is
{Wof(ag' s tmn)}

where

{tmn} ={t : Wyf(ag',t) >0, W,f(ag,t)=0}.

Figures 6.46 through 6.57 illustrate the reconstruction of the signals in the test set from
their positive extrema wavelet representations.
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Figure 6.46: Positive extrema wavelet representation for “packet”.

Shown above is the wavelet positive extrema representation and its reconstruction for the
signal “packet”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = Z,IX.__I |D,,.§|? and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response

" as a function of the channel number.
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Figure 6.49: Positive extrema wavelet representation for “chirp”.

Shown above is the wavelet positive extrema representation and its reconstruction for the
signal “chirp”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G = Z%ﬂ |D,, §|*> and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.50: Reconstruction of “chirp”.

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.

1000 — —T — — .
100 —_—
10 T
1 — — —T . ixxj__\"
0 0.2 0.4 0.8 0.8
cdf

IIIIIIIII Illllljll

-

>
o
o))
(=]

minimax vs. channel number

Figure 6.51: Cdf and minimax curves for “chirp”.
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Figure 6.52: Positive extrema wavelet representation for “harmonic”.

Shown above is the wavelet positive extrema representation and its reconstruction for the
signal “harmonic”. The trapezoidal analyzing function g appears in the top upper right. To its
left are the functions G = Y"N_, | D,,.§|?> and §. The middle graph displays the reconstruction
of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.53: Reconstruction of “harmonic”.

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function Ay,;monic is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.54: Cdf and minimax curves for “harmonic”.
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Figure 6.55: Positive extrema wavelet representation for “water”.

Shown above is the wavelet positive extrema representation and its reconstruction for the
signal “water”. The trapezoidal analyzing function g appears in the top upper right. To its left
are the functions G' = Z,ILI |D,,.3]% and §. The middle graph displays the reconstruction of
Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.56: Reconstruction of “water”.

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,,.; is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.57: Cdf and minimax curves for “water”.
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6.3 Applications

We have seen numerous examples of discrete wavelet representations in the previous sections.
From these examples it is seen that these discrete wavelet representations characterize signals
in a manner which reflects their time-frequency behavior. A representation of this sort lends
itself to numerous applications. Chapter 7 presents a partial list of such applications. In this
section we limit ourselves to two applications: noise suppression and compression.

For the discrete positive extrema wavelet representation with the trapezoidal analyzing
function g,.,;, the next two sections display numerical results of (i) the noise suppression scheme
discussed in Section 3.5.2 and (ii) the compression scheme discussed in Section 5.3.

6.3.1 Noise Suppression

For the noise suppression problem the goal is to reject noisy portions of corrupted signals
and to recover their coherent portions. Based on the scheme discussed in Section 3.5.2, a
numerical experiment is presented and its performance in various levels of random additive
noise is displayed.

The noise suppression experiment can be summarized as follows. Fix a noise level ¢ > 0
and a threshold 6 > 0. For each f, in the test set the following steps are performed:

(i) Generate a random noise signal w(t) such that for each ¢, w(t) is uniformly distributed
in [-1,1].

(ii) Additively corrupt the signal f, by ow yielding the noisy signal

fw=fut+ow.

(iii) Compute the wavelet positive extrema representation of f,,:
L
A(fw) = AWy fu(tmn,sm)}-

(iv) Compute the distribution function Ay, .

(v) Threshold the wavelet positive extrema representation A(f.) by 8, yielding the truncated
representation

AN
A6(fw) = {ngw(tm,'n,sm) . ngw(tm,n,sm) > 6} .
(vi) Generate reconstruction of f, using Algorithm 3.4.3 where initial data is
Co = A&(fw)

Figures 6.58 through 6.69 display the noise suppressed reconstructions for an additive noise
level o = 0.3 corresponding to a signal to noise ratio of SN R ~ 5.2dB.

Figures 6.70 through 6.81 display the noise suppressed reconstructions for an additive noise
level ¢ = 0.5 corresponding to a signal to noise ratio of SN R = 3.0dB.

Figures 6.82 through 6.93 display the noise suppressed reconstructions for an additive noise
level o = 0.7 corresponding to a signal to noise ratio of SN R =~ 1.5dB.
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Figure 6.58: PE wavelet representation for “packet”, o = 0.3.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “packet”. The trapezoidal analyzing function g appears in the top upper right.
To its left are the functions G = Y"N_, | D, _§|? and §. The middle graph displays the recon-
struction of Algorithm 3.4.3. The lower most graph displays the sampling set . At the top
of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.59: Reconstruction of noisy “packet”, o = 0.3.

Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.60: Cdf and minimax curves for noisy “packet”, o = 0.3.
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Figure 6.61: PE wavelet representation for “chirp”, o = 0.3.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “chirp”. The trapezoidal analyzing function g appears in the top upper right. To its
left are the functions G = E,]le |Ds,.g|* and g. The middle graph displays the reconstruction
of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom

graph is the input signal and to its lower right the values of the reconstruction parameters.
i
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Figure 6.62: Reconstruction of noisy “chirp”, o = 0.3.

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A.;, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.63: Cdf and minimax curves for noisy “chirp”, o = 0.3.
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Figure 6.64: PE wavelet representation for “harmonic”, ¢ = 0.3.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “harmonic”. The trapezoidal analyzing function g appears in the top upper right.
To its left are the functions G = zﬁ)’ml | Ds,.9]? and §. The middle graph displays the recon-
struction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top
of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.65: Reconstruction of noisy “harmonic”, o = 0.3.

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function Ay, menic is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.66: Cdf and minimax curves for noisy “harmonic”, o = 0.3.
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Figure 6.67: PE wavelet representation for “water”, o = 0.3.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “water”. The trapezoidal analyzing function g appears in the top upper right. To its
left are the functions G = SN_, | D,,.§|? and §. The middle graph displays the reconstruction
of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.68: Reconstruction of noisy “water”, o = 0.3.

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.69: Cdf and minimax curves for noisy “water”, o = 0.3.
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Figure 6.70: PE wavelet representation for “packet”, ¢ = 0.5.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “packet”. The trapezoidal analyzing function g appears in the top upper right.
To its left are the functions G = 271:1:1 | Ds,.g|> and §. The middle graph displays the recon-
struction of Algorithm 3.4.3. The lower most graph displays the sampling set I". At the top
of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.71: Reconstruction of noisy “packet”, o = 0.5.

Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.72: Cdf and minimax curves for noisy “packet”, o = 0.5.
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Figure 6.73: PE wavelet representation for “chirp”, o = 0.5.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “chirp”. The trapezoidal analyzing function g appears in the top upper right. To its
left are the functions G = YIV_, |D,,.§|? and §. The middle graph displays the reconstruction
of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.74: Reconstruction of noisy “chirp”, ¢ = 0.5.

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.75: Cdf and minimax curves for noisy “chirp”, ¢ = 0.5.
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Figure 6.76: PE wavelet representation for “harmonic”, o = 0.5.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “harmonic”. The trapezoidal analyzing function g appears in the top upper right.
To its left are the functions G = 2£=1 | D,,.G|* and §. The middle graph displays the recon-
struction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top
of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.77: Reconstruction of noisy “harmonic”, o = 0.5.

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,,mewc is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.78: Cdf and minimax curves for noisy “harmonic”, o = 0.5.
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Figure 6.79: PE wavelet representation for “water”, o = 0.5.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “water”. The trapezoidal analyzing function g appears in the top upper right. To its
left are the functions G = YN_, |D,,.§|* and §. The middle graph displays the reconstruction
of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.80: Reconstruction of noisy “water”, o = 0.5.

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.., is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.81: Cdf and minimax curves for noisy “water”, o = 0.5.
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Figure 6.82: PE wavelet representation for “packet”, o = 0.7.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “packet”. The trapezoidal analyzing function g appears in the top upper right.
To its left are the functions G = zzﬂ |Ds,,d|? and §. The middle graph displays the recon-
struction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top
of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.83: Reconstruction of noisy “packet”, o = 0.7.

Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coeflicient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.84: Cdf and minimax curves for noisy “packet”, o = 0.7.
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Figure 6.85: PE wavelet representation for “chirp”, o = 0.7.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “chirp”. The trapezoidal analyzing function g appears in the top upper right. To its
left are the functions G = Eﬁ:l | Ds,, G| and §. The middle graph displays the reconstruction
of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.86: Reconstruction of noisy “chirp”, o = 0.7.

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.87: Cdf and minimax curves for noisy “chirp”, o = 0.7.
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Figure 6.88: PE wavelet representation for “harmonic”, o = 0.7.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “harmonic”. The trapezoidal analyzing function g appears in the top upper right.
To its left are the functions G = Eﬁﬂ |Ds,.G|> and §. The middle graph displays the recon-
struction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the top
of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.89: Reconstruction of noisy “harmonic”, o = 0.7.

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coeflicient distribution function Ay, menic is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.90: Cdf and minimax curves for noisy “harmonic”, o = 0.7.
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Figure 6.91: PE wavelet representation for “water”, ¢ = 0.7.

Shown above is the wavelet positive extrema representation and its reconstruction for the
noisy signal “water”. The trapezoidal analyzing function g appears in the top upper right. To its
left are the functions G = Zﬁﬂ |D,,,d|* and g. The middle graph displays the reconstruction
of Algorithm 3.4.3. The lower most graph displays the sampling set T'. At the top of the bottom
graph is the input signal and to its lower right the values of the reconstruction parameters.
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Figure 6.92: Reconstruction of noisy “water”, o = 0.7.

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.93: Cdf and minimax curves for noisy “water”, ¢ = 0.7.
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6.3.2 Compression

In speech, the goal of compression is to represent speech signals in a way which minimizes
storage and transmission bandwidth requirements under the constraint that sufficiently high
“quality” approximations of the original speech signal can be recovered from the representation.
The meaning of the ‘quality’ of a reconstruction is a criterion which is difficult to specify
precisely. In vague terms we would like our representation to preserve pertinent perceptual
information in the speech signal, e.g., timbre, emotional state of the speaker, inflections, etc.
Intelligibility is a less stringent criterion by which to judge reconstructions. In this case, we
require only that listeners be able to determine the textual content of the original speech signal
purely from audition of the reconstruction.

We detail a compression experiment based on the discussion in Section 5.3. Let g = g41ap-
Fix a coefficient rate c,, e.g., ¢, = 4800 coef/sec. For each f, in the test set and for each value
of b., the following steps are performed:

(i) Compute the wavelet positive extrema representation of f,:
A
A(f*) = {ng*(tm,m Sm)} .

(ii) Determine the maximum number of coefficients n. with which f, can be represented and
still met coefficient rate constraint:

ne = ¢ - (£l
where |I( f.)| is the duration of f,.
(iii) Compute the distribution function Aj,.

(iv) Threshold the wavelet positive extrema representation A(f.) by § = A7!(n.), yielding the
truncated representation

As(£) & (Wyfultmm, om) = Wollmnysm) 2 6.
(v) Quantize the thresholded wavelet positive extrema representation, yielding the sequence
Qu.(As(f+))-
(vi) Generate reconstruction of f, using Algorithm 3.5.3 where initial data is
co = Qs (As(f+))-
Synthetic Data

For the compression of the non-speech signals in the test set we have chosen the discretization
parameters g = g, and ag = 1.09.
Figures 6.94 through 6.102 display the compressed reconstructions for a bit rate constraint

of b, = 1.2 coefs/msec and a quantization of b. = 2 bits/coef, i.e., 2.4 Kbits/sec.
Figures 6.103 through 6.111 display the compressed reconstructions for a bit rate constraint

of b, = 1.2 coefs/msec and a quantization of b, = 1 bit/coef, i.e., 1.2 Kbits/sec.
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Speech Data

The discretization parameters we have chosen for the speech data are ap = 1.1 and g = girap-
Note that to achieve greater compression we have resampled the s-axis effectively eliminating
every other channel.

Figures 6.112 through 6.120 display the compressed reconstructions for a bit rate constraint
of b, = 9.6 coefs/msec and a quantization levels of b, = 4,2 and 1 bit/coef respectively,
corresponding to bit rates of 38.4, 19.2, and 9.6 Kbits/sec.

Figures 6.121 through 6.129 display the compressed reconstructions for a bit rate constraint
of b, = 4.8 coefs/msec and a quantization levels of b, = 4,2 and 1 bit/coef respectively,
corresponding to bit rates of 19.2, 9.6, and 4.8 Kbits/sec.

Figures 6.130 through 6.138 display the compressed reconstructions for a bit rate constraint
of b, = 2.4 coefs/msec and a quantization levels of b, = 4,2 and 1 bit/coef respectively,
corresponding to bit rates of 9.6, 4.8 and 2.4 Kbits/sec.
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Figure 6.94: PE wavelet representation for “packet”, (b.,b,) = (2,1.2).

Shown above is the wavelet positive extrema representation and its reconstruction for the
The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Zﬁﬂ | Ds,,g|* and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

compressed signal “packet”.

parameters.
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Figure 6.95: Reconstruction of compressed “packet”, (b.,b,) = (2,1.2).

Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.96: Cdf and minimax curves for compressed “packet”, (b.,b,) = (2,1.2).
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Figure 6.97: PE wavelet representation for “chirp”, (b.,b,) = (2,1.2).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “chirp”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Y"N_, |D,, . §|> and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set T'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.98: Reconstruction of compressed “chirp”, (b, b,) = (2,1.2).

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.99: Cdf and minimax curves for compressed “chirp”, (b.,b,) = (2,1.2).
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Figure 6.100: PE wavelet representation for “harmonic”, (b.,b,) = (2,1.2).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “harmonic”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = 3"N_, |D,,. §|*> and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.101: Reconstruction of compressed “harmonic”, (b.,b,) = (2,1.2).

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function Ay,imenic is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.102: Cdf and minimax curves for compressed “harmonic”, (b.,b,) = (2,1.2).
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Figure 6.103: PE wavelet representation for “packet”, (b.,b,) = (1,1.2).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “packet”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = 3-N_, |D,,.§|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

parameters.
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Figure 6.104: Reconstruction of compressed “packet”, (b.,b,) = (1,1.2).

Above, the signal “packet”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.105: Cdf and minimax curves for compressed “packet”, (b.,b,) = (1,1.2).
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Figure 6.106: PE wavelet representation for “chirp”, (b.,b,) = (1,1.2).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “chirp”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = 3"N_. |D,,. §|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

parameters.
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Figure 6.107: Reconstruction of compressed “chirp”, (b.,b,) = (1,1.2).

Above, the signal “chirp”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.108: Cdf and minimax curves for compressed “chirp”, (b, b,) = (1,1.2).
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Figure 6.109: PE wavelet representation for “harmonic”, (b.,b,) = (1,1.2).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “harmonic”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Y"V_, | D, §|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.110: Reconstruction of compressed “harmonic”, (b.,b,) = (1,1.2).

Above, the signal “harmonic”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function Ap,;menic is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.111: Cdf and minimax curves for compressed “harmonic”, (b.,b,) = (1,1.2).
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Figure 6.112: PE wavelet representation for “water”, (b, b,) = (4,9.6).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Eﬁﬂ |D,,.g|* and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

parameters.
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Figure 6.113: Reconstruction of compressed “water”, (b, b,) = (4,9.6).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,..., is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response

as a function of the channel number.
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Figure 6.115: PE wavelet representation for “water”, (b.,b,) = (2,9.6).

Shown above is the wavelet positive extrema representation and its reconstruction for the
“water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = zzﬂ | Ds,.G|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

compressed signal

parameters.
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Figure 6.116: Reconstruction of compressed “water”, (b, b,) = (2,9.6).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.,., is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.117: Cdf and minimax curves for compressed “water”, (b.,b,) = (2,9.6).
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Figure 6.118: PE wavelet representation for “water”, (b.,b,) = (1,9.6).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Y°IV_, |D,, §|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

parameters.
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Figure 6.119: Reconstruction of compressed “water”, (b.,b,) = (1,9.6).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,..., is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.120: Cdf and minimax curves for compressed “water”, (b,b,) = (1,9.6).
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Figure 6.121: PE wavelet representation for “water”, (b.,b,) = (4,4.8).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = S"N_, |D,,.§|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

parameters.
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Figure 6.122: Reconstruction of compressed “water”, (b, b,) = (4,4.8).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.123: Cdf and minimax curves for compressed “water”, (b.,b;) = (4,4.8).
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Figure 6.124: PE wavelet representation for “water”, (b, b,) = (2,4.8).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Y-N_, |D,, | and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

parameters.
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Figure 6.125: Reconstruction of compressed “water”, (b.,b,) = (2,4.8).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function \,,,., is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response

as a function of the channel number.
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Figure 6.127: PE wavelet representation for “water”, (b, b,) = (1,4.8).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Z%ﬂ |D,,.d|* and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction

parameters.

181



1 E-] -as G L L B 3
0o F E 10 F E
of : i E
-05E 3 3 3
:l t ot 1 PN EE R RN | = 0 - =

0 100 200 300 0 2 4 6 8

water (ms) |water.ft| (KHz)

().()‘4 EJ LI L I LI L L I -; () (3 :J L' l L I LI I T 1 71 I
0.02 - 3 0.4 ;_ —f
OF . o2 E :
-0.02 = TE 3
= I PRI O I A B B - O o eyt !_

0 100 200 300 0 2 4 6 8

Time Reconstruction Modulus Frequency Reconstruction

Figure 6.128: Reconstruction of compressed “water”, (b;,b,) = (1,4.8).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function M,,... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.129: Cdf and minimax curves for compressed “water”, (b., b,) = (1,4.8).

182



looollllllllllllI 0.2 LIRS T e I [ O 4

100 3 E
0.1 3
10 3 3
1 i E
0.1 \ -0tk E
0‘01 1 1 | | l 1 1 i 1 l | 1 E I L 11 i I 11 ) i I 3
0 5 10 -10 -5 0 5 10
G and |g.ft] (KHz) g (ms)
0-04’ - I i i ] 1 l \ ] T T I T 1 ¥ T 1 "
0.02 -
oF ks i PR L E
-0.02 F E
_0.04 E | 2 1 1 1 1 1 1 1 ! i 1 ! ! | 1 3
0 100 200 300
Reconstruction vs. Time (ms)
: A(water)

i c, = 2.400 coe!s/ml:
- b, = 4 bit/coetf =
B n, = 744 coefs E
L 6= 0,047 .
» ag = 1,100 4
?: ‘”-.‘-::-llll =N IHIIIIIINII:TII % Il: :IIII'I WX RN IBE MBI N MM X :E :
m N MOOMNRKANRUNRAR XXX X e AMN MM i
k= -
m |

o
1 -
o -
's ] 1 1 2 1 ] 2 i 1 1 ] 1 I 1 . 1 ] 1~

0 100 200 300

Time(ms)

Figure 6.130: PE wavelet representation for “water”, (b, b,) = (4,2.4).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Y"N_, |D,,.§|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.131: Reconstruction of compressed “water”, (b;,b,) = (4,2.4).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A, is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.132: Cdf and minimax curves for compressed “water”, (b, b,) = (4,2.4).
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Figure 6.133: PE wavelet representation for “water”, (b., b,) = (2,2.4).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = Y"N_, |D,,.§|> and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Figure 6.134: Reconstruction of compressed “water”, (b.,b,) = (2,2.4).

Above, the signal “water”and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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Figure 6.135: Cdf and minimax curves for compressed “water”, (b, b,) = (2,2.4).
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Figure 6.136: PE wavelet representation for “water”, (b.,b,) = (1,2.4).

Shown above is the wavelet positive extrema representation and its reconstruction for the
compressed signal “water”. The trapezoidal analyzing function g appears in the top upper
right. To its left are the functions G = "N_, |D,,.§|? and §. The middle graph displays the
reconstruction of Algorithm 3.4.3. The lower most graph displays the sampling set I'. At the
top of the bottom graph is the input signal and to its lower right the values of the reconstruction
parameters.
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Above, the signal “water”’and its reconstructed versions in both time and frequency are
displayed. Below, the associated coefficient distribution function A,.... is plotted in the top
graph while the lower graph shows the max and min value of the wavelet filter bank response
as a function of the channel number.
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6.4 Discussion

In this chapter we have presented numerous examples of discrete signal representations.
Examples have been computed and displayed for cases from uniform sampling representations
in Paley-Wiener spaces to positive extrema wavelet representations in L*(R) or H2(R). More-
over, we have applied the notions of local frames and frame coherence to the applications of
compression and noise suppression.

6.4.1 Paley Wiener Sampling

We have provided examples which illustrate the reconstruction of bandlimited signals from
their irregular samples using Algorithm 3.4.3.

A sufficient condition given by the Duffin-Schaeffer Theorem 4.2.4 for the reconstruction
of a bandlimited signal from its irregular samples is that the sample set be dense enough,
i.e., the uniform density of the sampling set be larger than twice the bandlimit. For signals
with complex time-frequency behavior, e.g. the signal “packet” or “chirp”, the Duffin-Schaeffer
condition may lead to intuitively unsatisfactory sampling sets. For example for the “packet”
signal we are required to sample at a density consistent with the highest frequency sine packet
in the signal. For the other lower frequency sine packets this density is clearly excessive. Hence,
for Paley-Wiener sampling there is no mechanism for time localization. In other words it is
necessary to sample densely over the entire duration of the signal even if the high frequency
components of the signal are well localized in time. This situation naturally suggests a joint
time-frequency analysis such as afforded by the wavelet transform.

6.4.2 PE wavelet Representation

Some of the general properties of the PE wavelet representations with trapezoidal analyzing
function which have been observed here are listed below. Recall that the trapezoidal analyzing
has very good localization in both time and frequency.

Fast Convergence For all reconstructions based on the PE wavelet extrema representation
we have exhibited only the first iteration of Algorithm 3.4.3 with relaxation parameter A = 0.1.
As can be seen from the previous simulations the first iteration in every case is already a high
quality, though multiplicatively scaled (by A), version of the original. It has been experimentally
observed that further iterations serve only to scale the reconstruction properly. We attribute
this situation to the choice of well localized time-frequency analyzing function g = g,., and
the fact that the function G of Lemma 4.2.1 is essentially constant over the frequency range of
interest.

Quantization robustness Reconstructions via Algorithm 3.4.3 exhibit a high degree of ro-
bustness to quantization of coefficients. Quantization of the coefficients at levels as low as one
or two bits per coefficient still result in high quality approximations of the original signal. This
suggests the applicability of such representations to data and speech compression.
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Embedded truncated representations An appealing property of the truncated wavelet
representation of a signal f is that the truncated representations

As & (Wyfultmmr3m) ¢ Wofultmpns sm) > 6}

form a decreasing continuum of sets with respect to the threshold parameter é. In other words,
if 63 < 63 then As, C Ag,. Thus, the truncation is hierarchical in the sense that representations
with small information content As, are embedded in ones with higher information content Ag,.

Robust truncation It has been experimentally observed that (for coherent signals) as the PE
representation is truncated through the application of smaller thresholds é that reconstructions
based on initializing Algorithm 3.4.3 with the data As degrade in a robust way. Because the
truncated representations are naturally embedded (see above), the increase of the threshold
8 from &, to 82 (6, < 83) corresponds to the removal of some elements of As,. This in turn
corresponds to removing the least significant components of the reconstruction based on Ag,.
This insures that a small change in § will not lead to a catastrophic change in the reconstruction.

Time Translation Invariance The PE wavelet representation is translation invariant in
the sense that a time shifted version of a signal will yield a corresponding time shifted PE
wavelet representation. This is simply because the extrema points of a function are translation
invariant, i.e., if a signal is time shifted one unit to the left so are its extrema. Translation
invariance is an important property in pattern recognition schemes where it is desirable for time
shifted versions of signals to yield identical representations.

6.4.2.1 Noise Suppression

From the numerical experiments we have observed the ability to reject wide band random
noise in signals with coherent time-frequency structure. The basic approach to noise suppression
has been founded on the notion of frame coherence, viz. Section 3.5.1, and localization through
application of a thresholding operation on the (frame) representation of a noise corrupted signal.

The minimax curves in the simulations illustrate the notion of coherence. Recall that the
minimax curves show the minimum and maximum values attained by the output of a specific
filter in the continuous wavelet representation of the signal. Comparing the minimax curves for
a specific signal it can be seen that as the noise level is increased the overall shape of the curve
due to the coherent portion is retained while the gap between the minimum and maximum
curves is increased uniformly over all channels due to the incoherent portion. This is because
the incoherent portion must necessarily spread its energy throughout the entire filter bank. For
this reason we should choose a threshold which rejects the gap area. Clearly, in high noise
situations this procedure will break down since the non-coherent portion may rise to a level
comparable to the signal.

6.4.2.2 Compression

Examining the results of our compression experiment we can make the following observa-
tions:
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(i)

(ii)

(ii)

In general, reconstructions are ‘good’ for all values of b.=1,2 or 4. We use the term ‘good’
in the sense that both the time and frequency magnitude reconstructions are judged to
be close to their original counterparts.

Frequency magnitude reconstructions degrade less severely than time reconstructions as
b. varies from 4 to 1 bit per coeflicient.

Strong frequency components (peaks) are replicated faithfully.

The results of the experiment also indicate that the PE representation is highly robust
to quantization effects. Allocating just one or two bits per coefficient (b, = 1,2) still allows
for good quality reconstructions. It is here that we see one benefit of non-orthogonal highly
redundant systems, viz. Section 3.5.1. All of these observations suggest that the proposed data
compression scheme is a promising one for speech.

There are other variables, trade-offs, and issues for evaluating the compression scheme. We
list some of them here.

(i)

(i)

(iii)

(iv)

Besides coefficient quantization, time quantization must also be addressed. Each PE
wavelet coefficient for a signal f is a sample W, f(sp,,tm ) of the wavelet transform W, f.
Since the sequence {t,, , } is signal dependent for the PE representation, the reconstruction
process (receiver) must have knowledge of these values. In our reconstructions we have
assumed complete knowledge of the sequence {t, }.

Essentially, we have circumvented the issue of windowing of the signal by taking the
window to be of a length equal to the duration of the signal. In practice, windowing plays
a finer role, e.g., in narrowband speech compression systems going back to Dudley (1939),
speech coders divide the speech signal into intervals of duration 10 to 25 ms.

The dilation parameter ag effectively changes the frequency support of each filter in the
filter bank {(Dagagj}. In particular, increasing the value of ag decreases the bandwidth
of each filter in the bank. A decrease in bandwidth necessarily implies that a particular
filter will respond to a smaller band in frequency. Thus, keeping f the same, an increase in
the value of a¢ will cause the bands of activity in the original ao representation to become
compressed along the s-axis in the new increased ag representation. Thus, with ¢ fixed,
larger ag will lead to smaller data sets. On the other hand, larger values of ag will cause
the function G in 4.2.1 to have greater variation from constant value. This condition
necessarily implies a spread between possible frame bounds, i.e., movement away from
tightness. This, in turn, can be related to a slowing of the rate of convergence of the
reconstruction Algorithm 3.4.3.

An interesting inherent feature of the compression scheme and representation is that, in
a communication setting, all of the available bandwidth can be used for the transmission
of information about the underlying signal. Suppose a fixed information transmission
rate limit, e.g., the bit rate constraint b,. Further, suppose that a threshold of § = 0
yields a finite PE wavelet representation Ag(f.) from which it is possible to reconstruct
perfectly the original signal f,. Clearly, the cardinality of the representation Ao(f)
depends on the information content of the underlying signal f.. For example, if f, =0
then card As = 0 for all values of §. For signals with low enough information content,
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i.e., bc - card Ag < b, - [I(f.)|, the information rate constraint poses no problem. For
more complex signals, though, a threshold of zero will not suffice to meet the information
constraint. Suppose we have such a signal. In this case, an appropriate threshold must be
found via the distribution function in (5.3.3). Since the thresholded representations are
embedded (see above), the PE wavelet compression scheme can be viewed as a method
to remove the least significant coefficients from the set Ag to meet the information rate
constraint. Removing the least significant coefficients insures that the least amount of
information will be lost. The significance of this is that (i) the PE wavelet compression
scheme yields the best thresholded representation which meets the information constraint;
and (ii) if the information constraint b, were increased, the new PE wavelet compressed
representation would contain the old PE wavelet compressed representation. This is a
consequence of the fact that the information constraint b, can be related directly to the
threshold é by the relation
b, card As/|I(fi)| £ by,

and that card As is a decreasing function of . If b; < by are two information rate con-
straints, the two corresponding thresholded representations generated by the PE wavelet
compression scheme will be A, and As,, and 6; > 82 so that As; C Ag,. Consequently,
over different signals (or pieces of signals) it is always possible to transmit at a rate up to
the information limit b, by adjusting the threshold 6.

(v) We have not dealt with the issue of the choice of the analyzing function aside from
designing it to have good time and frequency localization. For the compression of speech
data it seems reasonable to suspect that analyzing functions which come from a model of
the auditory system will provide better results. This issue has been studied by Benedetto
and Teolis [BT92a], [BT92b].
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Chapter 7

Conclusion

We conclude this thesis with a brief summary and list of directions for future research.
Highlighted in the summary is a list of some of the contributions made by this research.

7.1 Summary

In this thesis we have presented a constructive theory for the discrete representation of
analog signals from infinite dimensional Hilbert spaces. The approach to discrete representation
which we have taken has its fundamental roots in the theory of frames and may be analyzed in
terms of irregular sampling in certain reproducing kernel Hilbert spaces. In its most general form
the discrete representation of a signal is the irregular samples of a signal dependent function
whose domain is a group, e.g., the real line under addition, or the affine group. Special cases
of this general transform are the Gabor and Wavelet transform.

With the perspective of digital implementation, we have developed algorithms for the recon-
struction of signals from their discrete representations. In addition, we have studied the effects
of quantization and perturbations in the representation domain with respect to reconstructions.

We have introduced the notion of frame localization with respect to a specific signal. Lo-
calization leads to finite discrete representations which efficiently capture the essential charac-
teristics of a signal.

Further, we have implemented the theory and provided numerous examples of representa-
tions and their reconstructions. For the particular case of the positive wavelet extrema rep-
resentation we have implemented schemes for noise suppression and compression. Results of
these applications can be viewed in Chapter 6.

In the following list we indicate some of the main contributions of this research:

o A general reproducing kernel Hilbert space frame representation approach to the repre-
sentation of signals from infinite dimensional Hilbert spaces.

e The development of iterative algorithms for the reconstruction of a signal from its discrete
representation which is cast in terms of the frame correlation operator, viz. Section 3.3.

o Identification of the role of the pseudo-inverse frame correlation operator in reconstruction
from perturbed representations and its relation to the underlying frame bounds in infinite
dimensional spaces, viz. Theorem 3.3.6.
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o The development of an iterative algorithm for the reconstruction of a signal from its
perturbed representation, e.g., from quantization of the representation.

e Introduction of the notion of frame localization through truncation and signal dependent
sampling sets.

¢ Introduction of the positive extrema wavelet representation for the efficient representation
of signals with complex time-frequency behavior.

o A discrete representation method for the suppression of noise based on the notion of frame
coherence, viz. Section 6.3.1.

A discrete representation method for the compression of signals, viz. Section 6.3.2.

7.2 Future Directions

Future research efforts may be thought of in two broad areas. First, there are extensions of
the theory and second, there is the investigation and development of further applications.

7.2.1 Theory

Some potential theoretical directions on which future research could focus are listed below.

Extension of the theory to higher dimensions In particular a two dimensional extension
of the theory would find immediate applicability in image processing.

'Incorporation of auxiliary information In many applications there is auxiliary informa-
tion known about a signal. For example, the signal may be known to be positive in certain
intervals. In such cases, we expect that signals should be able to be represented more efficiently
with side information than without it.

Investigation of zero crossing sets In [Log77] Logan shows that certain classes of (octave)
bandlimited functions may be reconstructed from knowledge of only their zero crossings to
within a multiplicative constant; however, Logan’s original work is non-constructive in nature.
The analysis of zero crossings in terms of the frame approach we have taken in this thesis may
lead to a constructive theory of reconstruction from zero crossing sets for octave bandlimited
functions. Moreover, extensions to larger spaces may be attacked with an approach similar to
that of Lemma 4.2.1.

Analysis/Design of discrete representations There are many free parameters present
in the generic discrete representations which we have developed here, viz. Chapter 4. These
free parameters include the group, group representation, analyzing function g, and discrete
sampling lattice in the group. In many cases some or all of these parameters will be fixed
independent of the class of signals of interest. For a given problem, however, it may prove
fruitful to tailor some of these parameters. A detailed analysis of these sorts of considerations
could lead to efficient and useful representations of signals. For example, the positive extrema
wavelet representation illustrated in Chapter 6 is based on signal dependent samplings where
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the group, group representation, and analyzing function are all fixed apriori. There, the group
and group representation have been selected to yield the wavelet transform. In this case, one
direction of future research would involve the investigation of the design of analyzing functions
to better suit the signals to be analyzed.

7.2.2 Application

In this thesis we have explored only two potential applications of the discretization theory.
Namely, we have examined applications to compression and noise suppression. There are a vast
number of other areas in signal and speech processing for which discrete representations have
applicability. A partial list of some of these is given below.

Signal Detection/Recognition From the simulations provided in Chapter 6 for the case of
the positive extrema wavelet representation, there is an indication that such a representation
captures the time-frequency content of the signal. Moreover, we have seen that these represen-
tations are robust to noise and enjoy the property of translation invariance. These observations
indicate that such a representation is well suited for detection' or recognition.

Parameter Estimation For signals which may be described by one or more parameters dis-
crete representations offer a method of estimating the signal parameter(s). In Chapter 6 we
have seen that for the case of the positive extrema wavelet representation the time-frequency
evolution of a signal is captured. For signals whose time-frequency behavior may be param-
eterized, e.g. frequency modulated (FM) signals, the positive extrema wavelet representation
should provide enough information to estimate the modulation parameters. For example the
parameter « in the chirp signal sin(at?) can be estimated from any one of its representations
in Section 6.2.2.3.

Synthesis/Resynthesis We have heretofore focused on the process of representing a signal
in a discrete manner. We may turn the situation around and ask if it is possible to directly
construct discrete representations which when reconstructed have desirable or interesting prop-
erties. Or in a related question we may ask the following: given a discrete representation of
a signal may that representation be altered to achieve some desired effect in the signal do-
main? Respectively, these two tasks are called synthesis and resynthesis. Development of such
techniques may prove useful in music for the synthesis/resynthesis of interesting timbres.

Time Dilation An interesting problem in sound processing is the speeding up or slowing down
of recorded sound while preserving the frequency support of the signal. A possible approach to
this problem is to develop processing techniques in the representation domain which perform the
requisite speeding or slowing of signals. For instance, for the positive extrema representations
of Chapter 6 a simple time dilation in the coefficient domain would change the speed in signal
domain but not the frequency support.
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Appendix A

‘Assorted Items

Proposition A.1 If K : H; — H; is a bounded linear operator mapping the Hilbert space H;
into the closed Hilbert space Hy then the adjoint operator K* maps Hy onto H;.

Proof:

We first prove that the range K*(Hz) is closed. Since Hg is closed, any converging sequence
{yn} € H2 converges to a y = limy, € H;. Through application of K* we may generate
another sequence z, = K*y, so that {z,} C K*(H;). Because K* is bounded and linear and
therefore continuous we have that z, converges and

z 2 lim z,, = lim K*y,, = K*(limy,) = K™y

where the exchange of limit is justified since K* is continuous. We conclude that z € K™*(H;)
because y € Hy. Thus we have proven that K*(H;) is closed.
Using the basic fact from operator theory that

K*(Ha) = (ker K)*,
and that K is 1-1, i.e. ker K = {0}, we have
K*(Hy) = K*(Hs) = {0} = H4.

This proves that K™ is onto H;.

Corollary A.2 If in addition to the hypotheses of A.1 K is self adjoint (H = Hy = Hy is
closed) then K™ is both surjective and injective, i.e. bijective, and therefore invertible on K (7).
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Appendix B

Group Representation

In this appendix we detail the computations which confirm that Il and II4 are group
representations of Gy and G4 respectively on L%(IR) with the group operations indicated in
Section 2.3.

B.1 Weyl-Heisenberg

The Weyl-Heisenberg group Gg is T x R X IR and the representation we are using is
IIg(2,t,v) = ze,7¢. For this to be a valid representation we must have II(z)II(y) = II(z - y) for
all 2,y € Gy. Note the operator identity

—27iab

Tp€q — € €aTh,

where a and b are real numbers. Let 21 = (21,%1,71) and 22 = (22,%2,72) be arbitrary members
of Gy. Then

HH(zl)HH(‘TZ) = 216y T 2264, Ty
_ —27iypt
= 212 TPMe e, Tt Th,

= 212267 e, g T gty
Thus, the group operation must be
(z1,t1,71) (22,12, 72) = (212267 2"ty + 13,11 + 72)-

With this operation it is easy to check that the identity is e = (1,0,0), i.e. V2 € Gy, z-€ =
e-x=z. If 20 = a:i‘l is the inverse of £; we must have e = z1 - 23 or

(1’0,0) = (21226_27ri72t17t1 +i2,m + 72)’
By direct substitution it can be seen that this is satisfied by

-1 —1_—2mimit
] = (z; €T by, —71).
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B.2 Affine

The affine group G4 is R x R and the representation we are using is I 4(¢,s) = 7 D;,. For
this to be a valid representation we must have II(z)II(y) = II(z - y) for all z,y € Gy. Note the
operator identity

Dy1y = 13—13 Dy,

where a > 0 and b are real numbers. Let z; = (s1,%1) and z; = (s2,%2) be arbitrary members
of G4. Then

HH((I)l)HH(xg) = Tt1 Dsl Tt2D32

= Tt1T3;1t2D81D52
TotsTlts Dy,s,
Thus, the group operation must be

(51,t1) - (82,82) = (t1 + 87 b2, 5152).

With this operation it is easy to check that the identity is e = (0,1),i.e. Vz € Gy, z-e = ez = z.
If 25 = xi’l is the inverse of 7 we must have e = 11 - 9 or

(0,1) =(t1 + sl”ltz,slsz).
By direct substitution it can be seen that this is satisfied by

z7! = (=811, 871).
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Appendix C

Generalized Inverses

This appendix provides some of the basic concepts associated with generalized inverses
of linear operators which are pertinent to frame representations and reconstructions. For a
detailed treatment of the subject the reader is referred to [Gro77].

There are several equivalent definitions of a “generalized inverse” of a linear operator. We
adopt the definition attributed to Penrose [Pen55] and use the terms “generalized inverse” and
“pseudo inverse” interchangeably.

Definition C.1[Gro77, Definition (P)] If A € B(Hy,H;) has closed range, then A is the
unique operator in B(Hz,H;) satisfying

(1) AA? is self adjoint,
(2) A'A is self adjoint,
(3) AAt A = A, and
(4) At AAY = At

Fact C.2 Let A € B(H1,Hz) have closed range. The mapping Af : Hy + H; defined by

argmin I
y €Ha

Al = y — Az||

is the generalized inverse of A.
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